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ABSTRACT

This report describes the work performed on the Ion Propulsion

System Technology Task in FY90. The objectives of this work fall

under two broad categories. The first of these deals with issues

associated with the application of xenon ion thrusters for primary

propulsion of planetary spacecraft, and the second with the

investigation of technologies which will facilitate the development

of larger, higher power ion thrusters to support more advanced

mission applications. Most of the effort was devoted to

investigation of the critical issues associated with the use of ion

thrusters for planetary spacecraft. These issues may be succinctly

referred to as life time, system integration, and throttling.

Chief among these is the engine life time. If the engines do not

have sufficient life to perform the missions of interest, then the

other issues become unimportant.

Ion engine life time was investigated through two experimental

programs: an investigation into the reduction of ion engine

internal sputter erosion through the addition of small quantities

of nitrogen, and a long duration cathode life test. In addition,

a literature review and analysis of accelerator grid erosion were

performed. The nitrogen addition tests indicated that the addition

of between 0.5 and 1.0 percent of nitrogen by mass to the xenon

propellant results in a reduction in the sputter erosion of

discharge chamber components by a factor of between 20 and 50, with

negligible reduction in thruster performance. The long duration
test of a 6.35-mm dia. xenon hollow cathode is still in progress,

and has accumulated more than 4,000 hours of operation at an

emission current of 25 A at the time of this writing.

One of the major system integration issues concerns possible

interactions of the ion thruster produced charge exchange plasma

with the spacecraft. A computer model originally developed to

describe the behavior of mercury ion thruster charge exchange

plasmas was resurrected and modified for xenon propellant. This
model enables one to calculate the flow direction and local density

of the charge exchange plasma, and indicates the degree to which

this plasma can flow upstream of the thruster exhaust plane.

A continuing effort to investigate the most desirable

throttling technique for noble gas ion thrusters concentrated this

year on experimentally determining the fixed flow rate throttling

range of a 30-cm dia. thruster with a two-grid accelerator system.

These experiments demonstrated a throttling capability which covers
a 2.8 to 1 variation in input power. This throttling range is 55%

greater than expected, and is due to better accelerator system

performance at low net-to-total voltage ratios than indicated in
the literature.

To facilitate the development of large, higher power ion

thrusters several brief studies were performed. These include the
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development of a technique which simulates ion thruster operation

without beam extraction, the development of an optical technique to

measure ion thruster grid distortion due to thermal expansion,

tests of a capacitance measurement technique to quantify the

accelerator system grid separation, and the development of a

segmented thruster geometry which enables near term development of

ion thrusters at power levels greater than i00 kW. Finally, a

paper detailing the benefits of electric propulsion for the Space
Exploration Initiative was written.
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1.0 THE EFFECT OF NITROGEN ADDITION ON XENON ION ENGINE EROSION

Sputter erosion of ion engine discharge chamber components can
be reduced by a factor of 20 to 50 through the addition of small

amounts of nitrogen to the xenon propellant. Short term test

segments (typically 24 hours in duration) were performed using a
modified 30-cm diameter J-Series ion engine to identify the optimum

quantity of nitrogen per unit mass to be added to the xenon. The

optimum nitrogen fraction was found to be in the range of 0.5 to
1.0 %. The addition of nitrogen fractions greater than

approximately 1.0 % was not found to significantly reduce the

sputter erosion beyond that obtained at the 1.0 % level. Surface

analyses revealed the presence of tantalum nitrides on tantalum

engine components which were exposed to the discharge chamber

plasma when nitrogen was added. Additional surface analyses

strongly suggested the presence of molybdenum nitrides on

molybdenum engine components as well. It is believed that the
observed reduction in sputter erosion through the addition of

nitrogen results from the formation of these sputter resistant
surface nitrides. Details of this work are given in the AIAA paper

titled, "The Effect of Nitrogen on Xenon Ion Engine Erosion," which

was presented at the 21st International Electric Propulsion

Conference and is reproduced in Appendix A.
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2.0 BENEFITS OF ELECTRIC PROPULSION FOR THE SPACE EXPLORATION
- INITIATIVE

The high performance (i.e., high specific impulse) of electric

propulsion systems offers substantial benefits for the Space

Exploration Initiative. For Lunar cargo, Mars cargo, and piloted
Mars missions these benefits include: substantially reduced initial

mass in low Earth orbit, reduced round-trip times for piloted Mars

vehicles, availability of large amounts of electrical power en

route and at the destination, less sensitivity to launch dates and

windows, reusability, and growth potential for human exploration of
the entire solar system. These benefits are discussed in detail in

the AIAA paper titled, "Benefits of Electric Propulsion for the

Space Exploration Initiative," which was presented at the 26th

Joint Propulsion Conference and is reproduced in Appendix B.
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3.0 SIMULATED ION THRUSTER OPERATION WITHOUT BEAM EXTRACTION

The development of high power (hundreds of kilowatts) ion

engines may be greatly facilitated through the use of a technique

which enables optimization of the discharge chamber to be performed

without beam extraction. Ion thruster operation without beam

extraction results in an experimentally determined decrease in the

accelerator system transparency to ions from approximately 0.8 down

to 0.22 for the standard 30-cm dia., J-Series ion optics. The

decreased ion transparency translates into a decreased propellant

flow rate requirement for operation without beam extraction,

enabling testing to be performed in smaller vacuum chambers with

lower pumping speeds. In addition, discharge chamber optimization

without beam extraction initially decouples the discharge chamber

development from the ion accelerator system development, allowing

development of these engine components to be performed in parallel

to a much greater extent than at present.

Performance curves experimentally determined without beam

extraction are shown to agree well with actual performance curves

obtained with beam extraction. Screen grid temperatures, however,

are shown to be significantly higher without beam extraction due to

the decrease in accelerator system transparency to ions. Details

of this work are described in the AIAA paper titled, "Simulated Ion
Thruster Operation Without Beam Extraction," which was presented at

the 21st International Electric Propulsion Conference and is

reproduced in Appendix C.



4.0 AN OPTICALTECHNIQUE TO MEASURE ION ENGINE GRID DISTORTION DUE
TO THERMAL EXPANSION

Ion engine accelerator system performance is strongly
dependent on the inter-electrode separation. Radial temperature

gradients and grid-to-grid temperature differences resulting from

normal engine operation can significantly alter the grid

separation. Thermally induced changes in the grid separation can
become increasingly severe as the engine diameter is increased

beyond the current state-of-the-art 30 cm size. Finite element

models of the grid thermal/mechanical behavior can greatly
facilitate the design of large diameter, high power ion accelerator

systems. These models, however, require experimental verification

before they can be used with confidence. Accurate grid gap
measurements made during engine operation are needed for this
verification.

Grid temperatures are known to be different for operation with
and without beam extraction (see Appendix C); therefore, it is most
desirable to obtain grid deflection measurements with beam

extraction. Non-intrusive optical techniques are the best

candidates to perform these measurements and several different

approaches were examined. A technique which measures grid
deflection by imaging laser light reflected from the screen and

accelerator grids was selected. Bench tests using this technique

with a set of 600 series, 30-cm dia. ion optics showed very
promising results. Details of this work are given in -the AIAA

paper titled, "An Optical Technique To Measure Ion Engine Grid

Distortion Due To Thermal Expansion," which was presented at the

21st International Electric Propulsion Conference and is reproduced
in Appendix D.

Based on the successful results described in this paper,
continuing effort focussed on the measurement of the screen-to-

accelerator grid gap on grids mounted to an ion engine operating in
a vacuum tank. To measure the gap between the screen and

accelerator grids, the mirrors must be glued onto the grids so that

the mirrors are perpendicular with respect to the incident laser
light. The important difference between the work discussed in

Appendix D and the work discussed below is that in the former case,
the grids were not attached to the ion engine, but instead were

placed on a bench. Therefore the grids and mirrors were easily

accessible and it was a simple matter to adjust the mirrors glued
to the grids so that they were perpendicular to the incident laser

light. However, with the grids attached to the engine, and the

engine mounted inside the vacuum tank, positioning the mirrors
perpendicular to the laser light became more difficult. It was not

possible to correctly align the mirrors within the time and

equipment constraints of this task for this fiscal year. Therefore

no measurements were made of the gap between the screen and

accelerator grids when the ion engine was inside the vacuum tank.

However, useful information of the displacement of a single grid



with the ion engine operating in the vacuum tank was obtained using

this technique.

The ultimate resolution of this grid displacement measurement

technique is limited in part by the distance between the imaging

optics which form the images of the laser spot that is reflected
from the grids and the grids themselves (see Fig. 1). This

distance is called the "optical path". In order to maximize the

resolution obtainable with the optical equipment available for

these tests, a vacuum facility was prepared which minimizes this

optical path. A schematic diagram of the test set-up is shown in

Fig. 1.

A 30-cm diameter, divergent field ion engine was operated

without beam extraction in this vacuum facility, using argon as the

propellant. The ion engine grids were heated by the 700 watt

discharge plasma and/or cathode radiation, and the grid

displacement was measured using a technique described in Appendix
D. Mirrors made from single crystal silicon wafers were glued to

the screen and accelerator grids. A 300 mm camera lens was used as

lens 1.

Laser light reflected from the screen grid was focussed onto

the photo-detector such that the detector output indicated by a

digital storage oscilloscope was at a maximum. Any movement of the

screen grid results in a decrease in the photo-detector output,
because the laser light is no longer focussed onto the detector.

The laser light reflected from the screen grid mirror is

re-focussed onto the detector by moving the pinhole/aperture

assembly. The absolute movement of the screen grid was measured by

adjusting the pinhole/aperture assembly with a micrometer stage and

reading the amount of movement of the stage from the micrometer
barrel.

The shape of the photodetector signal at peak maximum was

somewhat irregular, as shown in Fig. 2. Uncertainty in the peak

height, due to the irregular peak shape, was typically one to two

percent of the signal amplitude. Since a decrease in peak

amplitude of five percent was readily discernable over the

uncertainty in peak amplitude due to irregular peak shape,

uncertainty in grid movement was defined as the distance moved by
the micrometer stage such that the peak height was reduced by five

percent of the peak maximum.

The resolution of the technique, as implemented with available

equipment, was determined by performing tests with the ion engine
off. First, the laser light reflected from the screen grid mirror

was focussed onto the photo-detector, and the peak amplitude of the

signal was measured on the oscilloscope display. Next, the
micrometer stage (Fig. i) was adjusted (rotating the micrometer

barrel clockwise) until the signal amplitude decreased by five

percent of the peak amplitude, and the micrometer reading was

5
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recorded. Finally, the micrometer stage was adjusted (rotating

the barrel counter-clockwise) in the opposite direction until the

signal amplitude had again decreased by five percent.

Table I Resolution of the Laser Positioning Technique

With Engine Discharge Off

Micrometer Position for 5 %

Decrease in Detector Output,

Clockwise Turn

(ms)

10.04

Micrometer Position for 5 %

Decrease in Detector Output,

Counter-clockwise Turn

(mm)

10.07

Average
10.05

9.84

10.04 9.83

10.06 9.83

10.06 9.84

10.05 9.83

10.07 9.82

10.07 9.82

10.06 9.81

10.05 9.82

10.07 9.83

10.06 9.81

9.81

Average
9.82

The above procedure was performed several times over a period

of several days, again with the ion engine off. Typical values are

shown in Table i. For the data in this table the maximum signal

amplitude was obtained at a micrometer position of 9.94 mm.

The resolution of this technique, when defined as the amount

of micrometer movement to reduce the signal by five percent, was

± 0.i0 to ± 0.13 mm. Normal grid separation would be expected to

be approximately 0.51 mm. It was found that the resolution of the

technique was not affected by vibrations from pumps, valves, and

motors required to operate the laser imaging set-up or the vacuum

system. Resolution could be improved by using better quality

optics to increase the uniformity in the shape of the peak;

specific hardware requirements are discussed in a later part of

this report.
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The next series of experiments were conducted with the

cathode tip heater or discharge chamber plasma heating the ion
engine grids, for the purpose of measuring both the resolution of

the laser positioning technique and the absolute movement of the

screen grid. The tip heater consisted of a coil of tantalum wire

wrapped around the cathode. The cathode was heated to over 1100

degrees centigrade when a current of several amperes was conducted
through the tip heater wire. The radiation from the cathode and

tip heater assembly then heated the ion engine screen grid.

Resolution and absolute grid movement were both determined using

the same procedure described above. Results from these studies are

summarized in Table 2. The data under the heading "% Decrease in

Signal Amplitude" are discussed below.

Table 2

Engine Status

Laser Positioning Technique Data

Absolute

Movement

(mm)
, T

Resolution

(mm)

% Decrease in

Signal Amplitude

(over 60 s)

Engine Off 0 0.12 < 2.5

Tip Heater On 0.13 0.14 6.8

Discharge On 1.23 0.14 12
at 25 A

The screen grid mirror moved 1.23 mm when the engine discharge

plasma was turned on. It is not known if this reflects movement of

the screen grid alone, or thermal expansion of the entire engine.

The amplitude of the detector signal was very stable when the

ion engine was off. However, when the tip heater and/or engine

plasma were turned on, the amplitude of the detector signal

oscillated by the amount shown in Table 2 under the heading in the
fourth column. The approximate period of the oscillation was 75

seconds. The reason for this oscillation is unknown, but it

implies that the engine or grids oscillate in position when the

engine or grids are heated. This phenomenon was observed when the

grids were mounted in the open on an optics bench, but the

oscillations were significantly smaller in magnitude. Oscillations

in the accelerator system capacitance (with approximatelythe same

time scale) were observed in bench tests using the technique
described in Section 8.0 of this report.

The resolution can be increased by using optical components

that are superior in quality to those used for these tests.

Specific requirements are listed below:
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i.

•

•

i

•

Replace the laser used in these experiments.

The laser used had a guaranteed signal output of ± 5%.

The signal output of a superior laser would be better

than ± 1%.

Replace the objective lens.

The objective lens used in these experiments reflected

some of the incident light, which was transmitted through

the beam splitter and then focussed onto the

photo-detector. Use of an objective lens with a

non-reflective coating for the appropriate frequency
laser would result in increased resolution.

Replace the camera lens (lens I) with a single,

high-quality lens.
The camera lens employed actually consists of 6 separate

lenses; this resulted in multiple spot images at the

photo-detector.

Replace the optical table used in these tests with a

high-quality optical table, to reduce vibration.

Replace the beam chopper.
The home-made beam Chopper used in these tests added a

slight amount of oscillation to the amplitude of the

signal collected at the photo-detector.
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5.0 CHARGE EXCHANGE PLUME MODELING

As inert gas ion propulsion systems are maturing toward flight

applications, integration issues are becoming increasingly

important. These issues include: the effect of plasma produced by
the ion propulsion system on spacecraft charging and solar array

power drain; contamination of critical spacecraft surfaces due to

the arrival of propellant atoms or other thruster produced

particles; radiated and conducted electromagnetic interference; and

direct ion beam impingement on spacecraft surfaces• The first two

of these integration issues are either directly or indirectly a

result of the ion engine produced charge exchange plasma.

5.1 Introduction

During normal ion engine operation a small fraction of the

propellant atoms injected into the engine do not become ionized and

escape through the accelerator system apertures as neutral atoms.
A small fraction of the fast beam ions, which are accelerated

through these same apertures, occasionally pass close enough to the

relatively slow moving neutral atoms for charge exchange collisions

to take place. The end products of these collisions are fast

moving neutral atoms and relatively slow ions. Most charge

exchange ions are produced in close proximity to the downstream
surface of the engine. Electrons from the neutralizer cathode,

along with the slow ions, form the charge exchange plasma.

In general, ions produced by the thruster may be conceptually

divided into four groups:

I.

2.

High velocity beam ions.

Charge exchange ions which are formed between the screen

and accelerator grids and subsequently escape in straight
line paths with angles up to 90 degrees from the thruster
axis.

• Charge exchange ions which are formed just downstream of

the accelerator grid. These ions are accelerated back to

the accelerator grid and sputter off grid material•

• Charge exchange ions which are created farther downstream
of the accelerator grid and subsequently propagate

radially from the ion beam.

The group 4 ions have energies significantly less than both the

local electron temperature and the local potential differences in

the plasma. Consequently these ions are not limited to line-of-

sight trajectories• It is this group of ions, therefore, which may

potentially have the greatest interaction with the spacecraft. The

purpose of this study is to develop a first order modeling
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capability to describe the behavior of these ions.

A considerable number of investigations have been performed on

spacecraft charging/contamination and on the nature of the charge
exchange plasma. The majority of this work was performed in the

middle to late 1970's using mercury propellant (see, for example,

Refs. 1-7). In general, the present modeling capability results in

predicted values of charge-exchange ion number densities which are

in agreement with experimental data to only within an order of

magnitude. This is a result of the relatively simple models

employed and the difficulty of making accurate experimental
measurements due to vacuum facility effects. Recent studies on

spacecraft contamination induced by xenon ion thrusters, however,
concluded that ion thrusters probably do not pose a significant

contamination problem for the ETS-VI spacecraft. _9

Nevertheless, ion engine induced contamination issues are

still of major importance for the integration of ion propulsion

systems with other commercial and government spacecraft. The

objective of the work described herein was to first resurrect the

charge exchange plasma propagation code (PLASIM) developed for

mercury ion thrusters at Colorado State University (CSU), and

subsequently to modify this code as required for xenon propellant.

Finally, experiments to test the validity of the computer

predictions were to be identified.

S.2 PL,%SIM Computer Code

The PLASIM code developed by CSU simulates the propagation of

mercury charge-exchange ions emanating from the exhaust beam of a

mercury ion thruster, l The trajectories of individual ions are
simulated to determine the overall charge exchange plasma

propagation characteristics_ The model consists of two parts: a

simple one-dimensional model for the generation of the charge-

exchange ions, and a model which subsequently calculates the
trajectories of these ions. The ion generation portion is used as
a line source of charge-exchange ions for the trajectory portion.

The PLASIM program considers only ions which initially propagate

radially from the ion beam, i.e., the group 4 ions described above.

The model for the charge-exchange ion generation within the

ion beam is used to establish the initial distribution of the ion

paths along the beam (axial direction), as well as the magnitude of

the charge-exchange ion densities. This model (from Ref. i) is

briefly reviewed here, and a detailed description of the model is

presented in Appendix E. The beam is divided into 2N number of
regions for N ion trajectories (one region on each side of the ion

path) as illustrated in Fig. 3. The distribution of the
trajectories is established such that an equal number of charge-

exchange ions are created within each region. The generation rate

for the charge-exchange ions is given by
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ion trajectories.

dc_ = noniViSc_, (i)

Since the neutral number density will decrease with increasing

distance from the thruster, the ion trajectories are more closely

spaced near the thruster. The neutral number density distribution
is given by

zn0 ) (2)

The ion current density is assumed to be constant and concentrated

on the z-axis. This assumption allows for a closed form solution

of the charge-exchange ion generation rate. _ The ion current

density is given by

Jb = _r_enivi , (3)

The total number of charge-exchange ions created is determined by
integrating the local generation rate, Eq. (I), over the axial

range yielding

12



(4)

. .

The local number density of the charge-exchange ions is calculated

as discussed in Appendix F, resulting in the following equation,

1 C

n= = N 2_x Ad m v_ _ x Ad m (5)

where

C _.

J_ (I-_.)ooE mo

_2e2rb_u N
(6)

The paths of the charge-exchange ions are determined by cal-

culating the position of each ion through a series of iterations.
At each location a series of calculations are performed to

determine the local forces on the ion and its velocity components.

The velocity components and the iteration time-step are used to

determine the new position of each ion.

The ions are assumed to obey the "barometric equation"

relating the number density and electric potential

no = ne.r,_ _ k lej . (7)

At each location, the potential on the left and the right is cal-

culated from the number density on each side of the ion path. Once

the left and right potentials are known, the perpendicular force

(with respect to the ion trajectory) on the ion is calculated using

-e Av.

F, = Ad s (8)

where _ is the smaller of the left and right spacing. (Note: It

is reported that this technique is used to help eliminate in-
stabilities at the boundaries and has a negligible effect compared

to averaging the left and right spacing. I) The parallel force is

calculated using

-e A_
F! = Adp " (9)

where _ is the distance to the previous point. The parallel and

13



perpendicular velocities are then calculated using

Fj.,IA t:
Ave, I -

m o (10)

The velocities are converted from parallel and perpendicular coor-
dinates to x-z coordinates and then the new position of each ion is

determined using

xn. _ = Xol_ + vx A t ,
(11)

and

znev . z.ld + vz At . (12)

This process is then repeated until e_thera boundary is reached or

the maximum number of iterations (as specified by the operator) is
reached. A detailed description of the handling of special
conditions and boundaries is provided in Ref. 1.

Typical results are shown in Figs. 4 and 5. Figure 4 shows
the charge-exchange ion trajectories and Fig._ 5shows the normal-

ized ion number density contours. The number density values are

calculated by the model only along the ion trajectories. The

values between the trajectories are calculated by interpolation.

The first and last trajectories mark the end points of the density
calculations, that is, no extrapolation has been made for densities

beyond the simulation region.

5.2.1 Normalized Number Density Profiles: It was determined

that the charge-exchange ion number density values could be

normalized for the PLASIM model. This normalizati0n is suggested

from the theory and is discussed in detail in Appendix F. It
should be noted that this feature of the model was not discussed in

the previous publications. 1,2 The number density values are
normalized as follows

n_
nn°_m = C ' (13 )

where C is given in Eq. (6). The variables in this constant

include the thruster operating parameters, the beam radius, and the

propellant properties. All of the model variables are included in

the normalization constant except for the beam electron

temperature, _, and the geometry of the thruster and the modeling

region. These latter variables can have a significant effect on

the ion trajectories and therefore on the shape of the number
density contours.
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The normalization technique was tested by comparing the

normalized density profiles for cases with different input
variables. Each variable in the normalization constant was tested

by changing its value over a range varying from a factor of two for
some variables, to two orders of magnitude for others. All of the

resulting ion trajectories and density profiles appeared to be the

same. Changing the number of ion paths, N, changes the ion paths

slightly, primarily in the upstream region, as can be seen by

comparing Figs. 4 and 6. The number density profiles are, however,

very similar as seen by comparing Figs. 5 and 7. The difference in
the normalization values in Figs. 5 and 7 is a result of the

difference in the number of ion paths used (Fig. 5, N=40 and Fig.

7, N=20). However, the values of the number density on the same

contour in each figure will be the same for similar input

parameters.

The effect that a factor of 4 increase in the beam electron

temperature, T,, has on the results can be seen in Figs. 8 and 9.
A small effect can be seen on the first few ion trajectories (paths

near the thruster), by comparing the trajectories in Figs. 4 and 8.
Since the effect is small and confined to the upstream region, the

same normalized curves can be used for changes in _ less than about

a factor of 4 or 5. However, the values in the upstream region

will be less accurate. If this is the region of interest, then new

results should be calculated using the temperature of interest. In

the previous cases, Figs. 4 through 7, _ equal to 0.35 eV was used.

The effects of changes in the input variables on the number

density can quickly be determined using the normalized contours.

For example, if the beam current is doubled the magnitude of the
number densities will increase by a factor of four, but the contour

profile shapes will be unchanged.

5.2.2 Comparison of Mercury and Xenon: Since the majority of

the published work on ion engine charge-exchange plasmas and on ion

engine plume contamination is for mercury propellant, it is
desirable to compare the charge-exchange ion trajectories and

number density profiles for xenon with a similar computation for

mercury. A comparison of the relevant properties of mercury and
xenon is shown in Table 3, and the charge-exchange collision cross

sections for mercury and xenon as a function of ion energy are
determined from Ref. 10. Since xenon has a much lower boiling

temperature than mercury, it is expected that xenon condensation on

the spacecraft would be less of a problem.

In addition to the PLASIM model developed by CSU and modified

herein, two other related models were developed. A spherical

propagation model was developed to determine the number densities

of both propellant and molybdenum charge exchange ions at distances

beyond the capabilities of the PLASIM model, and a first order
model for the accelerator grid erosion was developed to provide a

17



source of metal neutral atoms required as input to the model for
spherical propagation of metal charge-exchange ions. These models
are described below.

TABLE 3

Property

Molecular Weight (AMU)

Atomic Mass (kg)

Boiling Temperature (K)

Propellant Property Data

I Mercury Xenon

200.59 131.3

3.33 X i0 "_ 2.18 X 10 .9

630 165

5.3 Spherical Propagation Model

The spherical propagation model estimates the charge-exchange
ion number densities at greater distances from the thruster than

the PLASIM model. The PLASIM model has a limited geometric range
because of its iterative solution technique. The spherical model

is capable of a much larger scale but is less accurate; therefore
for regions near the thruster the PLASIM model should be used. The

spherical model assumes that all of the charge-exchange ions
originate at a point source located one beam radius downstream of

the thruster as opposed to the line source used for the PLASIM

model. For the line source, 56 percent of the charge exchange ions

are created within one beam radius of the thruster and 76 percent
are created within two beam radii. Therefore, at distances that

are large compared to the thruster size, the assumption that the
charge-exchange ions originate at a point is reasonable.

The charge-exchange ion production portion of the spherical
propagation model is similar to that for the PLASIM model. The

total number of charge-exchange ions- created _s determined by
integrating the local generation rate over the appropriate axial

range resulting in Eq. (FI2) in Appendix F. The charge-exchange
ions are assumed to propagate spherically from the point source
given in Eq. (FI2) which is assumed to be located one beam radius

downstream from the thruster. The charge-exchange ion number
density is given by

riCE --

4 =R_vc_ (14 )

where

I kr.VCZ = m i (15)
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is the Bohm velocity for the ions. Substituting Eq. (FI2) into Eq.

(14) yields

/_CE =
J_ (1 - qu) ace mo 1

Substituting appropriate values for the constants yields

riCE = 1.28Xi02 s J_(l- 1]u)mo 1

r b11u _ R_ "
(17)

where T' and T' o are in eV

The ion densities within an angle of 90 degrees from the beam

axis are calculated using the isotropic model given in Eq. (17).

For angles between 90 and 180 degrees the angular dependence is
included. 2,3'8 The ions close to the thruster leave with velocities

normal to the beam. Since the equipotentials are also

approximately normal to the beam, the ions are deflected upstream

of the thruster by the electric field. The minimum ion velocity is

used for the initial ion velocity in the 90 degree direction. This

velocity is equivalent to the accelerating potential, kTe/2e. The
potential difference antiparallel to the beam direction is V. The

ratio between the 90 and 180 degree velocity components is

V_,o 2eAV
- = ctn2(8)

kr. (18)

The barometric equation may be written as

nce - exp(-e AV 1ace,9o _T_,; ) " (19)

The charge-exchange plasma electron temperature is assumed to be

half of the beam electron temperature (T,_ = T, / 2). 2.3 Substituting

into Eq. (19) yields

nce - exp[-ctn 2(8)] .
ricE,90 (20)

For angles greater than 90 degrees the local ion number density is

determined by multiplying Eq. (19) by Eq. (20). Kaufman reports a

good comparison between this model and the experimental data. 2 The

experimental data and the model results typically agree to within
a factor of two or three.
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The charge-exchange ion number density values can be
normalized in a manner that is similar to that for the PLASIM

model; however, the normalization constant is different as a result

of the different geometry. The number density values are normalized
as follows:

n= a_

nc_.,or, - ci . (2i)

where

CI = 1.28xi028 J_ (i - _u) °cR mo .

rb_u _ (22)

The variables in the constant Ci include the thruster operating

parameters, the beam radius, and the propellant properties. All of
the model variables are included in the normalization. The effects

of changes in the input variables on the number density can quickly

be determined using the normalized contours. For example, if the

beam current is doubled the magnitude of the number density will
increase by a factor of four, but the contour profiles will be
unchanged.

Typical results are shown in Figs. i0 and 11. Figure I0 shows

a set of small scale normalized charge-exchange ion density
contours and Fig. 11 shows a set of large scale density contours.

The region near the thruster where the PLASIM model is appiicable

is shown by the dashed line. The value of the number density may

be quickly calculated using this model. For example using the

model variables from Table 4 the constant, Ci, is equal to 6.658 x

1012. For a normalized constant Value, n_No_ , of 0,20 (radius of
2.236 m) the number density is 1.332 x 10 '_ m"_.

5.4 Metal Charge-Exchange Ion Model

The data from the SERT Ii test revealed that the spacecraft

contamination was primarily due to molybdenum orlginating f_6m the

thruster and that the contamination from the mercury prope!lant.was
negligible. 6 Even though the molybdenum contamination wa_ Confined

to line-of-sight trajectories, it is desirable to have a simple

model for quickly estimating the metal charge-exchange ion number

densities at various distances from the thruster (including non-

line-of-sight locations) in order to estimate potential
contamination levels at different points on the spacecraft.

The metal charge-exchange ions are formed when sputtered metal

atoms from the accelerator grid interact with the high energy
propellant ions. The sputtered atoms are a result of propellant

charge-exchange ions that form near the grids impacting with the

accelerator grid. The metal charge-exchange ions then propagate
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away from the thruster. The model is considered in two parts: a

grid erosion model, and a spherical ion propagation model.

Table 4 Example Values for Model Input Variables

Parameter

Grid open area fraction

Beam current (A)

Clausing factor

Grid separation (mm)

Propellant atomic mass (AMU)

Grid material atomic mass (AMU' )

Beam radius

sputter yield

(m)

(atoms/ion)

Electron temperature (eV)

Electron temperature in charge-

exchange plasma (eV)

Propellant atom temperature (eV)

Metal atom temperature (eV)

Net accelerating voltage (V)

Total voltage (V)

Propellant utilization

Propellant charge exchange
collision cross section (m2)

Metal charge exchange collision
cross section (m2)

Symbol

M,.M

S

Value

0.23

2.0

0.7545

0.6

131.3

95.94

0.14

0.80

OCE

OCE, m

0.90

3.0XI0 "19

6.0xl0 m

5.4.1 Accelerator Grid Erosion Model: Some of the propellant

charge-exchange ions are accelerated into the accelerator grid
because it is at a lower potential than the charge-exchange plasma.

The ions will acquire an energy approximately equal to the

accelerator potential (typically 300 volts). When these high

energy ions strike the grid, they sputter off neutral metal atoms_
The flux rate of ions to the grid is the accelerator grid current,

J,. The sputter rate is given by
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_o,m - J" S (23)
e

For xenon ions sputtering molybdenum, the sputter yield ranges from
0.72 to 0.87 for 500 eV ions and increases to 1.60 for 1 keV ions. n

A value of 0.80 is used here. The accelerator current is given by

Ja = a= noJ b L , (24)

where L is the effective length from the grid that contains the

charge-exchange ions that may reach it. Equation (24) may also be
written as

Ja =_cB eL , (25)

where n_ is the local charge-exchange ion production given by Eq.

(FII) of Appendix F with z=0 (location at the thruster). Equation

(FII) may be written for this case as

2J_(1 - nu)o=
!

ZJcx = e2V'o 11. Ab (26)

where

Ab = _r_F, Xc . (27)
z

Note that in the PI_SIM model the neutral flow area was not cor-

rected for the grid open area fraction or the Clausing factor.
Substituting Eqs. (26) and (27) into Eq. (25) yields

4J_(l - 11u)Oc_ L
J,=

_e_. Vo=_ _,Kc " (28)

and substituting for the constant values yields

Ja = 2"53x1014J_(l nu-11u)°cBLr_m_o_ (29)

The effective length, L, is given by

L = L a + L_ + Nu95 D ,
(3O)

where the first term is the effective ion acceleration distance for

the accelerator system, the second term is the deceleration

distance downstream of the thruster, and the third term is an

effective len--gt-hfor the ion s0urce determined-by the upstream _end

of the ion beam plasma. At this location the electric field

established by the accelerator grid negative potential falls off
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exponentially into the plasma. This form of the third term was

suggested by Kaufman 8 to account for ions that reach the grid due

to this effect. Kaufman suggests using a thickness of Debye

lengths, that is, N m = 5. The Debye length is given by

Ld = _ eokTe - 6.21xi0-4 i T_ ( Vnl I/4e 2n , -_ _--_) rb •
(31)

The physical grid separation is frequently used for the effective

acceleration distance, La. The deceleration distance, Ld, is calcu-

lated using the following equation _2'13

L_ - (i+ 3¢I/_- 4¢3/_)j_ A.
Jb (32)

where

A. - _r_f. , (33)

and Jc_ is the Child current between parallel plates which is given

by

4% _e Vi I'

Lg

Substituting for the Child current and the constant values yields

tr3/2 _ 2

,._ - i.'12×Io-_ "_ _b(1 + 34,I,'_- 4,1,3,'_)
(35)

All of the parameters for calculating the accelerator grid current

from Eq. (24) are now known, and the sputter.rate can be calculated

using Eq. (23). Using Eq. (23) along with the mass of the metal

atoms, the wear rate of the grid can be calculated from

_m = _O,m mo,m -
JaS mo,m . (36)

e

The wear rate can be used to estimate the material loss from the

grid over time. This rate provides the average loss over the grid

only, and cannot provide local wear rates.

5.4.2 Metal Charge-Exchange Spherical Propagation Model: The

spherical model previously discussed may also be used for the metal

charge-exchange ions. The grid erosion model provides an estimate
of the erosion rate of the metal and therefore is used as a source

of neutral species for the charge-exchange model. The metal
neutral atoms are modeled the same way the propellant neutral atoms
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were, and are considered as a Boltzmann gas with a temperature

equal to the accelerator grid temperature. The flux of the neutral
metal atoms is given by

_o,m -- I--n4 -,m Vo Ag , (37)

where A& is the grid area,

Ag = _r_(l - F a) . (38)

Note that since the metal neutrals originate from the grid

material, the fraction of grid area (l-Fa) is used. For comparison

purposes the same density distribution of the propellant neutrals

is used for the metal neutrals, namely,

no.m - 1- _r_ ÷ z 2 " (39)

It may be recalled that the total production rate of the charge-

exchange ions is calculated by integrating the local production
rate as follows:

l_cz.m = fo'I}c2(z) dz =
Jb (_CE, m n_,m Ib

2e

(40)

Substituting Eqs. (23), (38) and (39) into Eq.

• 2JaJ b S ac_,,

Ncz'" = _e2rbvo.m(l - F.) "

(40) yields

(41)

For the spherical propagation, the number density is calculated

using Eq. (14). Substituting for the constant values and using Eq.

(29) for J, yields

d_ (l-_u)O_ a=, m _ too,m (Lg + Ld + NulL D) (42)nc_om = 3"25xi033 ---__3----- _7 1

The density of the metal charge-exchange ions depends upon both the

propellant and the metal properties since the propellant charge-
exchange ions produce the metal neutral atoms. The metal charge-
exchange ion number density can be normalized like the propellant
charge-exchange ions as shown in Eq. (21). The c0ntour proffles
will be the same for both ion types, since they are both assumed to

propagate spherically from a point located one beam radius down-
stream of the thruster.

5.4.3 Calculation Example: Using the values for the model

variables presented in Table 4 the following values were calculated
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at a radius of 2.236 m from the thruster and

(n_ = 0.20) :

nc_ = 1.332 x 1012 m "3

ncz,m = 1.772 x 109 m"3

J. = 1.558 mA
wear rate = 4.463 mg/hr

n_ / n_ = 752

At 0 = 120 degrees

n_ = 9.544 x 1011 m"3

n_,, = 1.270 X 109 m 3

0 < 90 degrees

Although the metal charge-exchange ion number density is a factor

of 752 lower than the propellant ion number density, the metal ions

are more likely to condense on the spacecraft due to their much

higher melting point. The metal ions are therefore more likely to

be a contamination problem.

5.5 Future Recommendations

An experimental investigation of the behavior of mercury

charge-exchange ions was performed by Carruth and Brady (Ref. 5,
pp. 67-72). This study consisted of using long cylindrical

Langmuir probes to determine the local charge-exchange ion number

density, flow angle and velocity/energy. An end effect associated

with long Langmuir probes enhances the ion current when the probe
is aligned with the ion flow direction. Therefore, by rotating the

probe, the flow direction can be determined by locating the maximum

current. For regions upstream of the thruster exit, the plot of ion

current verses probe angle shows a distinct peak. For regions

downstream of the exit the peak is not as distinct due to the

presence of ions that exit the thruster at "large" angles.

Facility effects have a significant effect on the accuracy of

the experimental data. Charge-exchange ions may be produced when

neutrals sputtered from the frozen mercury target enter the beam.
These ions were observed to flow from the target direction by

Carruth and Brady. This effect was investigated by tilting the

target to different angles during the testing. The facility ions

did not affect the charge-exchange ion flow directions but did have

an effect on the number density. Due to the large fraction of

facility ions, number density and velocity measurements were made
in the upstream region only. A discussion of both modeling and ex-

perimental work for estimating the nature of the facility-produced
ions is provided in Ref. 5. The types of experiments performed by

Carruth and Brady appear to be a reasonable first step to

experimentally investigate the behavior of the charge-exchange
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plasma produced by xenon thrusters.

Finally, a two-dimensional axisymmetric model of the thruster

beam, including density profiles for both the neutrals and the high

energy ions, is required for the development of more sophisticated

charge exchange plasma flow models. Such a model could, for

example, be used to determine the spatial distribution of charge-

exchange ions and corresponding accelerator grid erosion patterns,

which could then be compared to experimental measurements of

accelerator grid erosion.
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6.0 CATHODE LIFE TEST

6.1 Introduction

The power-limited, low thrust nature of ion propulsion results

in very long engine burn times being required to accomplish typical

missions of interest. Engine burn times of 10,000 to 15,000 hours

are generally required for deep space missions. The hollow cathode

is a key component of the ion engine, and therefore must be capable

of reliable, long term operation. Hollow cathodes have been under

development for ion engines since the middle 1960's _4 and have been

the subject of numerous studies and endurance tests. I_ The vast

majority of these investigations performed up until the early

1980's used mercury as the working fluid, although some early

studies also looked at cesium. Cathode operation was found to be

very reliable with mercury vapor, and a life-time of greater than
25,000 hours was demonstrated 31 with a 6.35-mm diameter hollow

cathode operating at a discharge current of 10.5-11.5 A.

More recently ion engine research and development efforts have

centered on the use of rare gases (argon, krypton and xenon) rather

than mercury. Along with this switch from mercury is the trend to

operation at higher powers and thrust levels. These higher power

operating regimes require significantly greater cathode emission

currents. There is little long term, hollow cathode operating

experience with rare gases, especially at emission currents above

15 A. Most notably a 6.35-mm dia. hollow cathode was operated at

an emission current of 6.3 A for approximately 4,000 hours, and a

similar cathode (but with a larger orifice diameter) was operated
for 900 hours at an emission current of approximately 19 A. _ In

both of these tests, which used xenon gas, the cathodes were tested

as part of a full-up engine life test. In addition to these tests,

a 12.7-mm dia. hollow cathode was operated on argon for 1,000 hrs

at an emission current of I00 A. 42 A summary of inert gas hollow

cathode testing is given in Ref. 53.

There have been no tests of a rare gas hollow cathode, at an

emission current required for a 5 kW xenon ion engine, in which the

test duration was a significant fraction of the engine design life

time (i0,000 hrs48). Therefore, the present program was initiated

to perform a 5,000 hour testof a 6.35-mm dia. xenon hollow cathode
at an emission current of 25 A. The 25 A emission current level

was selected to be a more severe test of a cathode similar to that

which would be required to operate at an emission current of 19 A

in the 5 kW engine under development at NASA Lewis Research

Center. 4s The test duration of 5,000 hours was selected to be half

of the engine design life, with the expectation that major design

deficiencies may be uncovered in this time span. Ultimately,

cathode tests of i0,000 hours 0r longer wiil be required.
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6.2 Apparatus and Procedure

6.2.1 The Cathode: The cathode used in this test is shown

schematically in Fig. 12. The body of this cathode consists of a

6.35-mm diameter by 57.12-mm long molybdenum tube with a nominal
wall thickness of 0.635 mm. This tube is electron beam welded to

a 2.54-mm thick molybdenum flange at the upstream end, and a 2 %

thoriated tungsten orifice plate (shown in Fig. 13) is electron

beam welded to the downstream end. The orifice plate is 1.52 mm

thick with a minimum orifice diameter of 1.80 mm. A 56 degree
half-angle chamfer is machined into the downstream face of the

orifice plate. An SEM photograph of the orifice plate welded to

the cathode tube is shown in Fig. 14. A close-up of the molybdenum

weld-bead is given in Fig. 15, indicating a high quality weld with
no cracks in the weld bead itself. Evident also in this

photograph, however, is a stress crack in the tungsten orifice

plate. Two such stress cracks were found subsequent to the
electron beam welding process. Leak tests indicated that these

cracks do not go completely through the orifice plate. Previous
experience indicates that the formation of such cracks is not

unusual, so the decision was made to use this cathode for the life
test.

A 12.7-mm diameter by 12.7-mm long cartridge heater assembly
is used for the cathode tip heater. This heater assembly consists

of a molybdenum wire potted in aluminum oxide. The cartridge
heater is friction fitted over the downstream end of the cathode

tube. The downstream end of the cartridge heater is positioned
approximately 0.25 mm upstream of the end of the cathode. One of

the molybdenum heater leads is crimp connected to a copper lead

using the crimp portion of a nickel lug. This entire lead assembly

is insulated using ceramic beads. The other molybdenum heater lead

is connected directly to the stainless steel cathode flange with a
stainless steel screw. No radiation shielding is used around the

heater assembly. In addition, it is expected that with good

thermal contact between the cathode and the cartridge heater, the
downstream face of the heater will act as a radiation fin and

facilitate cooling of the cathode at high emission currents.

A 3.2-mm diameter stainless steel tube is welded into the

stainless steel cathode flange, and a gas passage is machined into

this flange as shown in Fig. 12. A gastight seal between the

stainless steel and molybdenum flanges is provided by a Grafoil

gasket and a knife edge machined in the downstream surface of the

stainless steel flange. Leak tests using nitrogen indicate that

this configuration is leak-tight to greater than 2.0x105 Pa (15

psig). These leak tests are performed using a shaped elastomer to

plug the cathode orifice and then submerging the entire assembly in
water. The internal cathode pressure during operation is on the

order of 2.7x103 Pa (20 torr) so this seal arrangement is leak-

tight at a pressure two orders of magnitude higher than required.

A photograph of the unassembled cathode is given in Fig. 16.
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Figure 14 SEM photograph of orifice plate welded to cathode
tube.
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The cathode insert indicated in Fig. ii consists of an 80 %

dense porous tungsten cylinder impregnated with a barium-calcium-

aluminate oxide mix with a molar ratio of 4:1:1 and is identical to

the inserts used in other recent tests. 48,5° The insert is 25.4-mm

long and has a wall thickness of 0.76 mm. A Mo-Re collar is brazed

to the upstream end of the insert to provide a transition material

from the tungsten insert to the three rhenium leads which are

brazed to this collar. The insert is placed into the cathode tube

with the downstream end of the insert touching the upstream face of

the orifice plate. The insert leads are clipped so that they

extend slightly beyond the upstream surface of the molybdenum

cathode flange. The assembly process of tightening the bolts which

hold the stainless steel and molybdenum flanges together compresses

the insert leads and firmly holds the insert against the orifice

plate. The cathode tube was cleaned in acetone and then in alcohol

prior to the insertion of the cathode insert. During the assembly
of the cathode and installation of the cathode into the vacuum test

facility, the insert was exposed to air for a total of 2 hours and
15 minutes.

6.2.2 Test Facility: The cathode test facility, which is

shown in Fig. 17, consists of a 0.91-m diameter by 2.l-m long

stainless steel vacuum tank with two 0.25-m diameter oil diffusion

pumps. The cathode is mounted in a J-Series ion engine style

cathode pole piece assembly with the baffle and baffle support legs

removed. The standard J-Series thruster keeper assembly is used

for the started electrode. The cathode pole piece assembly is

bolted to a stainless steel plate which also supports the disk-

shaped anode positioned 130 mm downstream of the cathode. A

cylindrical, tantalum foil enclosure attached to the stainless

steel plate facilitates pressurization of the region between the

cathode and the anode permitting operation at lower cathode flow

rates. The anode consists of a SERT II thruster style, flat

molybdenum ion extraction grid with tantalum foil spot welded to

the side facing the cathode, and is radiation cooled.

Two W-5%Re/W-26%Re thermocouples were attached to the

downstream face of the cartridge tip heater. These thermocouples

were attached by first spot-welding tantalum foil to the molybdenum

heater surface. The thermocouples were then spot-welded to the

tantalum. A second layer of tantalum foil was spot-welded over the

thermocouples to secure them in place. In addition, a disappearing-

filament type optical pyrometer is used to measure the temperature

of the cathode as indicated in Fig. 17. The optical pyrometer was

calibrated by placing a standard lamp with a 2 % thoriated tungsten
filament in the vacuum system at the location of the cathode. The

calibration was accomplished by viewing the lamp through the vacuum

tank window over the same optical path used in the life test.

The xenon feed system consists of approximately 1.8 m of 6.35-

mm diameter stainless steel tubing and is shown in Fig. 18. All

tubing pieces and fittings were cleaned in acetone and rinsed in
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Figure 17 Cathode life test facility.
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Figure 18 Life test xenon feed system.
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alcohol prior to assembly. A new MKS, Inc., 0-20 sccm, thermal
mass flow meter is used to measure the xenon flow rate into the

cathode. Downstream of this flow meter, a thermal mass flow
controller from Sierra Instruments is used to control the xenon

flow rate. This arrangement permits measurement of the flow rate
independent of the action of the flow controller. It also

eliminates possible thermal feed-back effects from the solenoid

valve in the flow controller from affecting the flow sensor.

Furthermore, this arrangement always results in the same pressure

downstream of the MKS flow meter, regardless of the pressure to

which the flow controller is exhausting. A capacitance manometer

positioned downstream of the flow controller is used to measure the

cathode internal pressure during operation. The capacitance

manometer was calibrated immediately prior to installation in the

gas feed system.

A separate pump-out line is included in the feed system to
facilitate removal of contaminant gases from the feed lines. This

pump-out line is connected to both sides of the flow controller to

provide a large diameter path for the gas. Four shut-off valves

are included in the feed system to permit isolation of different

feed system components. The entire feed system was subjected to

two series of leak tests. In the first, the two pump-out line

shut-off valves were closed along with the shut-off valve to the

cathode. The feed lines were then pressurized to 2.45xi05 Pa (35

psig) and carefully checked for leaks using a soap-like bubble

solution. No leaks of xenon gas out of the system were detected.

The second set of leak tests were designed to look for air leaks

into the feed system for those components which would be operated

at pressures less than atmospheric pressure during normal

operation. In this case the feed system was pumped out to high

vacuum for several days, then all of the shut-off valves were

closed and the pressure increase indicated by the capacitance

manometer over another period of several days was recorded. From

these data a maximum leak rate into the propellant feed system was
estimated to be 2x104 standard cm3/s.

Both the flow controller and the flow meter were carefully

calibrated prior to the initiation of the life test. The new MKS
thermal mass flow meter was calibrated at the manufacturer's

facility on the east coast of the United States using nitrogen and

a secondary calibration standard. The flow meter was then shipped

to JPL where it was subsequently taken to the manufacturer's

facility on the west coast and recalibrated on both nitrogen and

xenon using a primary volumetric calibration standard. Next, the

flow meter was calibrated in-house at JPL on nitrogen and xenon

using a secondary volumetric calibration standard (i.e., a "bubble"

volume calibration kit from the Hastings corporation).

The results of these calibrations are shown in Figs. 19-21.

The comparison between the calibrations performed with the MKS

primary calibration standard and the Hastings calibration kit is
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given in Fig. 19 for nitrogen. These data indicate that the

Hastings calibration kit agrees well with the primary standard
calibration. The calibrations with the Hastings kit were performed

on two separate days with no difference in the results. In

addition, the calibration on nitrogen at the MKS facility indicated
that the flow meter's calibration had not changed (within the

manufacturer's tolerance of 0.8 % of full scale) as a result of

being shipped from the east coast to the west coast.

The data in Fig. 20 indicate the flow meter's response to

xenon gas instead of nitrogen over the range of flow rates of

interest. A straight line curve fit to these data indicates a

slope of 1.22 and an intercept of 0.171. The slope of 1.22 differs
from the manufacturer's recommended correction factor for xenon of

1.32 by a significant amount. Finally, after seven months and more
than 4,000 hours of operation, the flow meter was recalibrated on

xenon using the Hastings calibration kit. The results of the new
calibration are compared to those of the old one in Fig. 21. A
curve fit to the new calibration data indicates a slope of 1.20 and

an intercept of 0.029. The new calibration data indicate a shift
in the flow meter response after seven months of continuous

operation that amounts to approximately 5 % of the flow rate. The
shift is such that the actual flow rate is 5 % less than the

indicated flow rate.

The electrical schematic for the cathode life test is given in

Fig. 22. There are three power supplies, a tip heater supply, a

starter supply, and the anode supply, all of which are 60 Hz

laboratory supplies. The starter supply is actually a parallel
combination of two separate supplies. One is a high voltage supply

capable of 900 V at i00 mA, and the other is a 35 V, 10 A supply

with current regulation. Both the tip heater and starter supplies

are only used to start the cathode. During normal operation only

the current regulated anode supply is used. A calibrated 100 mV,
30 A current shunt is used to measure the discharge current.

Commercial heater elements were installed on the vacuum tank

liner in order to heat the liner prior to initiation of the life

test. These heaters were used to bake the tank liner out at >100°C

for 30 hours prior to the beginning of the test. This bake-out

procedure resulted in an ultimate tank pressure of 9.3x10 s Pa

(7x10 _ tort). After 4000 hours of nearly continuous high vacuum

operation the no-flow tank pressure had decreased to approximately

6.7x10 "5 Pa (5x10 "7 torr).

6.2.3 Computer Control System: A computer data acquisition

and control system is used to run the life test and enables long
duration, unattended operation. A detailed description of this

system is given in Appendix F.

6.2.4 Start-Up Procedure: The following procedure is used to
condition the insert and start the cathode. The insert
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conditioning is accomplished by first setting the xenon flow rate

to the normal run condition (4.0 sccm). The tip heater current is

then set to 4.0 A and the cathode is heated to approximately 500"C

(as indicated at the orifice plate) for 3 hours. After 3 hours the

heater power is removed and the cathode is allowed to cool for 30
minutes. The cathode heater current is then set to 7.0 A and the

cathode is heated to > I050°C for 1 hour. After 1 hour the cathode

is again allowed to cool for 30 minutes after which the tip heater
current is set to 7.5 A to heat the cathode to > II00°C. The

cathode is heated under these conditions for 30 minutes before

attempting to initiate the discharge.

6.3 Test Results After 4,200 Hours of Operation

A photograph of the cathode in operation is shown in Fig. 23

and a close-up of the cathode orifice plate is shown in Fig. 24.

The photograph in Fig. 24 was taken after 4,046 hours of operation

and indicates the view of the cathode which the test operator sees

through the optical pyrometer. The orifice plate is clearly

visible through the aperture in the starter electrode. Orifice

plate temperatures are normally taken at a radial location

corresponding to the midpoint of the visible portion of the orifice

plate. Temperature measurements indicate a significant radial

temperature gradient along the orifice plate. The optical

pyrometer was also used to measure the temperature of the insert

itself. The emitting surface of the insert can be clearly seen

through the cathode orifice as indicated in this photograph.

Furthermore, the insert surface appears considerably brighter than

the orifice plate. This photograph also indicates that after 4,046

hours of operation, the starter electrode does not appear to be

significantly eroded. Finally, no material deposits on the
interior diameter of the cathode orifice are evident.

A summary of the cathode life test operating history is given
in Table 5. The first five shutdowns indicated in this table were

ultimately traced to a faulty anode power supply. The faulty power

supply was an SCR regulated Sorenson supply which resulted in

rather noisy operation of the cathode as indicated in Figs. 25 and

26. Current oscillations, as indicated in Fig. 25, were typically
+2.0 and -3.5 A around a nominal value of 25.1 A, with a frequency

of approximately 80 kHz. The corresponding voltage oscillations

are shown in Fig. 26 where the average voltage is 19 V with spikes

to greater than 65 V. These data were taken with a xenon flow rate

of 4.0 sccm. After 123 hours of operation, the faulty Sorenson

power supply was replaced with a transistor regulated Hewlett-

Packard supply.
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Table 5 Cathode Life Test Summary

Shutdown Run

# Time

(hrs)

I

1 40

Test

Segment
Duration

(hrs)

40

2 62 22

3 114 52

4 121 7

5 122 1

6 123 1

7 295 172

8 558 263

9 581 23

10 697 116

11 743 46

12 1289 546

13 1649 360

14 2704 1055

15 3020 316

16 3069 49

17 4221 1152

Explanation

Low anode voltage detected by the

computer. Faulty anode power supply.

Faulty anode power supply.

Faulty anode power supply.

Faulty anode power supply.

Faulty anode power supply.

Manual shutdown to change anode power

supply.

Lightning strike closed hi-vac, valves.

Computer shut down cathode.

Data acquisition system failure. Computer
shut down cathode.

Failure of pdmaty and back-up printers.

Computer shut down cathode.

Data acquisition system failure. Computer
shut down cathode.

Data acquisition system failure. Computer
shut down cathode.

Mechanical pump belt broke. Operator
error led to computer shutdown of

cathode.

Lightning strike. Computer shut down
cathode.

Operator error led to computer shutdown
of cathode.

Xenon bottle changed. Gas pulse required

to restart (200 tort).

Flow controller failure. Computer shut

down cathode. Cathode exposed to air for

approximately 5 minutes. Gas pulse

required to restart (200 torr).

Restart Conditions

Start

Voltage

Required

Orifice

Plate

Tempera-

ture (°C)

1143

(v)

25

1047 22

1047

1047

1024

1029

1041

1052

1048

1041

1047

1153

1085

18

35

35

Xenon bottle changed. Gas pulse required

to restart (200 torr).

1050

1050

1050

1050

35

35

50

50

8O

8O

9O0

9OO

3OO

>9OO

>9OO

>9O0

5O



Figure 23 Life test cathode in operation.
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Figure 24 Close-up of cathode orifice during operation at run

hour 4046.
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Figure 25 Discharge current oscillations with Sorenson anode

supply -- 2 A per major division vertically, 10

microseconds per major division horizontally.
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Figure 26 Discharge voltage oscillations with Sorenson anode
supply -- 20 V per major division vertically and 10

microseconds per major division horizontally.
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Operation on the Hewlett-Packard power supply was

significantly less noisy than with the Sorenson supply as indicated

in Fig. 27. This figure shows a discharge current oscillation of

±0.75 A with a frequency of 5 kHz. A higher frequency oscillation

(approximately i00 kHz) superimposed on this 5 kHz oscillation is

also evident from this oscilloscope trace. Discharge voltage

spikes, with occasional peaks to +30 V, were also detected at this

frequency. The switch from the Sorenson to the Hewlett-Packard

power supply also resulted in a decrease in orifice temperature of

approximately 50°C.

With the exception of the first 123 hours, the entire test was

conducted with the Hewlett-Packard supply, and the discharge

current oscillations shown in Fig. 27 remained unchanged until

approximately 4,000 hours of operation. At this time a low

frequency oscillation (330 Hz) appeared. The magnitude of this

oscillation was _4 A for the current and _2 V for the discharge

voltage as indicated in Figs. 28 and 29. The very high frequency

(I00 kHz) oscillations were still present at this time, but the 5

kHz oscillations had disappeared. By increasing the xenon flow

rate from 4.0 sccm to 5.0 sccm the low frequency oscillations were

eliminated. Operation at the higher flow rate, however, resulted

in an anode voltage of only 12 V. It is planned that the last 700

hours of the test will be conducted at the higher flow rate.

Shutdown number 7 resulted from a nearby lightning strike

which momentarily removed power from the diffusion pump high vacuum

valves causing them to close. The computer detected the resulting

increase in tank pressure and shut down the cathode. Shutdown

number 9 occurred when both the primary and the backup printers

failed and the computer responded by turning off the cathode.

Shutdowns 8, I0 and ii resulted from failures in the data

acquisition hardware, which, when detected by the computer, caused

the computer to shut down the test. A software change to increase

the tolerance to data acquisition system errors eliminated these

shutdowns.

Of the 17 shutdowns which have occurred in the 4,200 hours of

operation to date, ii occurred in the first 750 hours. Shutdown

number 12 occurred as a result of a broken belt in one of the two

mechanical pumps backing the diffusion pumps. The broken belt

itself did not result in the shutdown since the system can operate

on a single mechanical pump. The problem occurred when the pump

was brought back on line following replacement of the belt.

Bringing the pump back on line created a momentary surge in the

foreline pressure which the computer detected and interpreted as

serious pumping system failure causing it to shut down the cathode.

This shutdown could have been avoided by disabling the computer

shutdown authority.

Shutdown number 13 resulted from another lightning strike

which again momentarily removed power from the laboratory. The
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Figure 27 Discharge current oscillations with Hewlett-Packard
anode supply -- 0.5 A per major division vertically,

i00 microseconds per major division horizontally.
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Figure 28 Low frequency discharge current oscillations which

began after approximately 4000 hours of operation.

Oscillations are ±4 A at 333 Hz.
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Figure 29 Low frequency discharge voltage oscillations, ±2V at
333 Hz.
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14th shutdown was a result of operator error. This error occurred

near _he depletion of the i000 liter bottle of xenon used in the

test. The high pressure side of the regulator indicated zero

pressure, but the low pressure side still indicated 35 psig. In an

attempt to determine the remaining bottle pressure, the regulated

pressure setting was increased until it reached a maximum. The

flow controller, however, could not respond adequately to the

change in upstream pressure, resulting in a momentary decrease in
the flow rate to the cathode. This decrease in flow rate resulted

in a discharge voltage which exceeded the maximum allowable voltage

level set in the computer, causing the computer to shut down the
cathode.

The 15th and 17th shutdowns were manual shutdowns required to

change xenon bottles. Finally, shutdown number 16 was caused by
failure of the Sierra thermal mass flow controller. The flow

controller failure was such that it slowly decreased the xenon flow

rate over a period of several hours. As the flow rate decreased,

the discharge voltage increased. When the discharge voltage

exceeded the maximum allowable voltage level, the computer shut
down the cathode.

Also evident in the data in Table 5 are the conditions

required to restart the cathode following a shutdown. The first ii

times the cathode was restarted, covering a period of 743 hours of

operation, the cathode started very easily, and with relatively low

voltages applied to the starter electrodes. All of these restarts

were performed with the normal 4.0 sccm xenon flow rate through the

cathode. No conditioning procedure was used prior to these
restarts since the cathode was maintained at high vacuum with

continuous xenon flow throughout each shutdown. The lightning
strikes which caused shutdowns 7 and 13 occurred during normal

working hours and high vacuum operation was restored within

minutes. The 12th restart required 900 V applied to the starter

electrode to ignite the cathode.

Clearly evident in these data is the trend toward increasing

restart difficulty with operating time. The only exception is

restart number 14 which required 300 V applied to the keeper. This

restart, however, was accomplished within minutes of the cathode

shutdown, and the cathode did not cool off significantly before the
restart. All other restarts were performed beginning with a cold

(i.e., room temperature) cathode. The last three cathode restarts

required a 200 torr gas pulse to force the transition from the low

current high voltage glow discharge mode to the high current arc

mode. In this case, applying 900 V to the keeper electrode would
result in a 900 V, i0 mA glow discharge which would not transition

to the arc mode. To force this transition, the starter supply was

turned off and the shut-off valve leading to the cathode was closed

until the pressure indicated by the capacitance manometer indicated
200 torr. At this time the shut-off valve was opened rapidly and

the starter supply was turned on to 900 V. This procedure caused
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an immediate establishment of a 2.0 A arc discharge to the starter

electrode which was then easily transferred to the anode electrode.

The variation in the Orifice plate temperature as a function

of cathode run time is given in Fig. 30. The decrease in orifice

plate temperature resulting from the change in power supplies at
run hour 123 is clearly evident in this figure. Also evident is

that subsequent to the change in power anode supplies, the orifice

plate temperature remained essentially constant at approximately
I125_ until run hour 1,000. From this point on, the orifice plate

exhibits a gradual increase in temperature with time. These data

indicate an occasional significant decrease in orifice plate

temperature. These decreases are accompanied by decreases in the

temperatures of the cathode flange and cathode support plate as

indicated by the thermocouples located there, as well as by changes

in the discharge voltage.

Beginning after run hour 2950 measurements of the insert
brightness temperature were made using the optical pyrometer

looking at the insert surface through the cathode orifice.

Comparisons of the insert and orifice plate brightness temperatures

are given in Fig. 31 covering the time period from 2950 to 4000

hours of cathode operation. The insert and orifice plate

temperatures appear to be relatively well correlated as one would

expect. The unexpected feature of these data, however, is the high

brightness temperature of the insert. Models of the insert barium

depletion rate (as discussed in the next section) predict a very
short life time for insert operation at the temperatures indicated

in this figure.

The temperature of the stainless steel cathode flange as a

function of run time is given in Fig. 32. The large spikes

appearing in this figure correspond to cathode shutdowns. In
general, the cathode flange temperature shows a slight, gradual
increase with time. The anode current and voltage over this same

time period are given in Figs. 33 and 34. The anode power supply

is operated in the current regulating mode so that a constant 25 A
anode current is maintained. The large spikes in the anode current

correspond to cathode re-starts in which the cathode was operated
at less than 25 A for a short time. On the compressed time scale

of Fig. 33 these short time intervals appear as spikes. The

corresponding discharge voltage versus time is shown in Fig. 34.

At the beginning of the life test the discharge voltage was between

19 to 21 volts. After approximately 900 hrs the discharge voltage

dropped to 18 V and remained there for 500 hrs. At approximately
run hour 1400 the discharge voltage decreased to between 15 and 16

volts. This discharge voltage level was maintained for the next

1400 hrs, after which the discharge voltage began a gradual
increase back to approximately 18 V. The discharge voltage spike

at run hour 3069 corresponds to the flow controller failure.
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The xenon flow rate, as measured by the MKS thermal mass flow

meter, and the interior cathode pressure are given in Figs. 35 and

36 over the first 3700 hours of cathode operation. The xenon flow

rate is maintained approximately constant by the Sierra flow

controller. Again, the spikes in the data represent short duration

operation at other flow rate settings. The cathode pressure data
indicate a slight, gradual increase in the interior pressure. This

pressure increase is most likely a result of the increase in

cathode operating temperature, since no obstructions to the xenon

gas flow can be seen in Fig. 24. Finally, the keeper voltage

versus run time is given in Fig. 37.

6.4 Model of Cathode Insert Life

A cathode life time model, developed in Ref. 34, gives the

fraction of barium lost from the insert as a function of insert

temperature and operating time according to the equation

--_ = B e -a/r tI12, (43)
qo

where a and B are constants with the values 32

a -- 1.61 x 104 [K] (44)

B = 400 [hr'In]. (45)

In general the chemical reaction for the production of barium on a
hot tungsten surface is given by _

2Ba3Al2_(s) + W(s) - BaWOi(s) + 2BaAl2_(s) + 3Ba(g). (46)

If this is the only reaction producing free barium, then only half
of the initial barium can beused. The other half becomes locked-

up in SaWO 4 and BaA1204. However, because of other possible

reactions that may take place inserts made of impregnated porous

tungsten may be capable of dispensing between 1/3 and 2/3 of the

total impregnated barium. D Thus, the most optimistic life time

prediction would be obtained from Eq. (43) by assuming that 2/3 of
the initial barium is available to lower the surface work function.

Assuming that the insert is at the brightness temperature of

1500°C as indicated in Fig. 31 and assuming that this temperature

controls the insert life, then Eq. (43) predicts an insert life of

only 321 hours to deplete 2/3 of the total barium (q/qo = 0.5).
Since the cathode has been operating for more than 4,000 hours,

there is clearly a flaw in the reasoning. Equation (46) implicitly
assumes that all of the barium that is evaporated from the surface

is immediately lost from the cathode. However, as stated in Ref.

25, if the barium can be prevented from permanently condensing on

non-emitting cathode surfaces, then a greatly increased insert life

should result. This can be accomplished if these other cathode
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surfaces are maintained at or above 300°C, and preferably above

400"C.m In the present life test cathode, the temperature of the

stainless steel flange at the back of the cathode is typically 430°C

or greater, as indicated in Fig. 32, suggesting that the cathode

life could be considerably greater than that predicted by Eq. (47).

In this case, the barium that is evaporated from the insert may

migrate to other cathode surfaces, but the temperature of these

surfaces is such that the barium is prevented from condensing.

Eventually, the barium may return to the insert surface. Under

these circumstances, barium is lost from the cathode only through
the cathode orifice.

It is unlikely, however, that this non-condensing feature of
the life test cathode is sufficient to account for the difference

in predicted and demonstrated cathode life times by itself. Other

possibilities include:

le

u

A strong axial temperature gradient along the 25.4 mm
insert length, resulting in an average insert life which

is considerably greater than that determined by the
temperature at the downstream end.

A true insert temperature which is significantly less
than the brightness temperature indicated by the optical

pyrometer. If the temperature of the orifice plate
(approximately 1200°C) is used in Eq. (46), it is

calculated that 4850 hours would be required to deplete
half of the initial barium.

• Barium reaction and evaporation rates at high

temperatures that are significantly different than those

represented by the constants in Eqs. (47) and (48). The

life time predictions from Eq. (46) are very sensitive to

the value of the constant which appears in the

exponential function.

Clearly there is a need for increased understanding of barium

impregnated, hollow cathode operation at high temperatures.

6.5 8_ary

A hollow cathode life test is currently in progress to

investigate the long term operating characteristics of xenon hollow

cathodes operated at emission currents greater than 20 A. At the

time of this writing a 6.35-_ diameter, molybdenum body, hollow
cathode with a barium oxide impregnated porous tungsten insert has

accumulated more than 4,000 hours of operation at an emission

current of 25 A. Visual observations of the cathode orifice plate
and starter electrode suggest that very little erosion of these

components has occurred over this time period. Furthermore, no

material deposits in the interior diameter of the cathode orifice
can be seen. Variations in discharge voltage of several volts at
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constant current and flow rate have been observed over the course

of the life test. A gradual increase in the orifice plate

temperature with time has been recorded. In addition to this

gradual increase, changes in orifice plate temperature of _50°C have
been observed over time periods of a few hundred hours. Restarting

the cathode has become progressively more difficult over the course

of the life test. Finally, optical pyrometer measurements of the

insert brightness temperature indicate an insert temperature which

is far too high to be consistent with a cathode life time of

several thousand hours according to existing models.
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7.0 FIXED FLOW R_TE THROTTLING

7.1 Introduction

It has generally been accepted that ion engine throttling for

outbound solar electric propulsion missions would be accomplished

through a reduction in both beam current (i.e., propellant flow

rate) and beam voltage. This throttling technique permits the

largest variation in input power. The J-Series mercury ion engines

were throttled in this manner, and were capable of operating over
a 3.8 to 1 variation in input power. 51 Modlfication of these

engines to run on xenon at higher power levels led to an engine
which could be throttled over an 8 to 1 power range by varying both

the beam current and the beam voltage. 52

7.2 Throttling With Fixed Beam Current

The overall propulsion system for inert gas ion engines,

however, could be greatly simplified if the engines could be

throttled over a large variation in input power at constant beam

current. In this case, power throttling would be accomplished by

changes in the beam voltage alone. The simplifications made

possible through constant beam current operation include the

following considerations. Constant beam current implies engine

operation with fixed propellant flow rates which, in turn,
eliminate the need for active propellant flow controllers. In this

case the fixed propellant flow rate iS dete_ined through the use

of a pressure regulator and a flow restrictor. Constant beam

current operation also implies operation at a single discharge

current, thus eliminating the need for complex software which is

currently required to control and throttle the engines. 53 Finally,

life testing is significantly simplified since there is only a

single discharge chamber operating point at which the engine must

be tested. Long duration testing at fixed flow rate was first

demonstrated in tests by Beattie et al. _ in which a 25-cm diameter

thruster was operated for more than 4,000 hours on xenon at a

constant power level.

Operation at constant flow rate and constant beam current

requires that engine throttling be accomplished through variations
in beam voltage alone. Consequently, the allowable variation in

beam voltage at constant beam current determines the throttling

range. For the beam current to remain constant as the beam voltage

is varied, the total voltage between the screen and accelerator

grids must be constant. The total voltage is the sum of the

magnitudes of the beam voltage and the accelerator grid voltage.
As the beam voltage is decreased, the accelerator grid voltage must
be increased in order for the sum to remain fixed. The allowable

range of beam voltages for a fixed total voltage is determined by
the ratio of the beam voltage, also referred to as the net voltage,

to the total voltage as indicated in Eq. (47):
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The maximum value of the net-to-total voltage ratio, R_=,
occurs when the magnitude of the accelerator grid voltage is a

minimum. The lower limit on the magnitude of the accelerator grid

voltage is determined by the electron backstreaming limit. If

there is insufficient negative voltage on the accelerator grid,
then electrons from the neutralizer cathode will be accelerated

into the engine by the positive high voltage. The result is a

large power drain and very inefficient engine operation.

Therefore, a certain magnitude of negative voltage must be applied

to the accelerator grid to prevent this electron backing phenomena.

In general, for a two-grid accelerator system, the maximum net-to-

total voltage ratio is in the range 0.85 to 0.90.

The minimum value of the net-to-total voltage ratio occurs

when the magnitude of the accelerator grid voltage is a maximum.

The maximum accelerator grid voltage is determined by defocussing

effects of the individual ion beamlets for each pair of screen and

accelerator grid apertures. At low net-to-total voltage ratios the

ions are accelerated through the full total voltage and then

decelerated through the accelerator grid voltage, so that in the

end the ions leave the thruster with an energy equivalent to only

the net, or beam, voltage. The deceleration process defocuses the

ion beamlets, and the greater the deceleration, the more the

beamlets are defocused. The minimum net-to-total voltage ratio

occurs when the beamlets are defocused to the point where they

begin to impinge directly on the accelerator grid webbing. Data _5'_

obtained with mercury propellant indicated that the minimum net-to-

total voltage ratio for a two-grid accelerator system was in the

range 0.4 to 0.55. Three-grid accelerator systems have been

successfully operated at net-to-total voltage ratios as low as
0.21.56. _

7.3 Effect of Fixed Flow Rate Throttling on Mission Performance

The effect of constant beam current throttling on mission

performance for outbound solar electric propulsion missions is

detailed in Refs. 58, 59, and 60, and is briefly summarized here.

Performance comparisons between constant beam current and variable

beam current throttling systems were made for a comet nucleus

sample return (CNSR) mission to comet Kopff. A solar electric

propulsion system was assumed to be used for the first leg of this
mission. Specifically, the mission assumed an indirect rendezvous

trajectory to Kopff launched in the year 2000 by a Titan IV-Centaur

in which the electric propulsion system is used to deliver a

payload of between 2000 and 3000 kg to the comet. A beginning-of-

life solar array power level of 25 kW was assumed and this power
level was derated by i0 % to allow for system and environmental
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degradation.

was assumed.

In addition, a constant housekeeping power of 400 W

Mission performance calculations were performed for several

propulsion system configurations and operating modes. For a fixed

beam current of 4.0 A per thruster, system operating modes included

a maximum of 3, 4, 5 or 6 simultaneously operating thrusters.

Other calculations assumed a fixed beam current of 3.0 A per

thruster and included cases with a maximum of 4 or 5 operating

thrusters. Only one case was investigated for the variable flow

rate throttling approach; a maximum of 4 operating thrusters was

assumed. In each case, the number of operating thrusters was

continuously varied during the mission in order to produce the best

mission performance. The results of these calculations, which were

made using a modified version of the trajectory optimization

program EPITOP 59, are given in Table 6.

Table 6 Comparison of Throttling Strategies

Throttling Maximum Launch Initial Propellant Final Total
Strategy Operating Energy Vehicle Consumed Vehicle Thruster

C3 Mass (kg) (kg) Mass (kg) Days

Constaat 17.7 5243 1364 3879 2607

Beam 16.4 5357 1452 3905 2775

Current 15.9 5401 1490 3911 2849

Variable Beam
Current

Bean'1

Current

(A) Thrusters

4 3

4 4

4 5

4 6

3 4

3 5

1-4 4

15.6 5421 1509 3911 2885
r

17.5 5258 1279 3979 3258

16.6 5335 1338 3997 3410

17.0 5299 1246 4O53

Several interesting things are evident from the data in Table

6. First of all, the propellant expenditure is slightly higher and

the total delivered mass is slightly lower for the constant beam

current throttling cases than for the variable beam current case.

It is expected that this comparison would be true for other types
of SEP missions. 59 These mass differences are not considered to be

significant, so that the constant beam current throttling appears

not to affect the mission performance in a significantly adverse

manner.

The second significant item is the total number of thruster-

days required for the mission. A thruster-day represents one

thruster operated for one day. This operating time can be used

together with the number of thrusters in the system to calculate

the required thruster life time. For example, the variable beam
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current case required a total of 3444 thruster days. Multiplying

this number by 24 hours/day and assuming that the propulsion system
included 5 thrusters results in an engine life time requirement of

16,530 hours. For a 6 engine propulsion system the engine life

time requirement is reduced to 13,780 hours.

It is evident from Table 6 that all of the constant beam

current throttling cases require fewer total thruster-days than the
variable beam current case. In some cases, significantly fewer

thruster-days are required. For the 4.0 A constant beam current

throttling case with a maximum of three thrusters operating, the

number of thruster-days required is only 2607. If this propulsion

system is comprised of 6 thrusters, then a useful thruster life

time of only 10,400 hours is required. This is a 24% reduction in

required thruster life compared to the 6-engine, variable beam
current case, and a 37% reduction with respect to the 5-engine,

variable beam current system.

The reduction in total number of thruster-days for the

constant beam current throttling cases results from the engines

being operated on average at higher thrust-to-power ratios than are

typical for the variable beam current case. Thus, at each power

level, the engines throttled at constant beam current are producing
more thrust than would be produced at the same power level with

variable beam current. Since the propulsion system is6Xproducing

more thrust, the total thrusting time is shorter to produce the

same total impulse. Clearly, the propulsion system configuration

and throttling technique, in addition to the mission itself, have

a substantial impact on the required engine technology, i.e.,

thruster lifetime and performance characteristics.

7.4 Experimentally Determined Throttling Range

Experiments were performed to determine the constant beam

current throttling characteristics of a 30-cm diameter, two-grid

accelerator system. These experiments were performed using a

modified J-Series 61 divergent-field thruster. Modifications to the

standard J-Series configuration included removal of the isolator

and vaporizer heaters, replacement of the mercury high voltage

propellant isolators with isolators designed for improved

performance with inert gas propellants, replacement of the

perforated ground screen with a solid ground screen, and

replacement of all of the Teflon-coated, kapton wire with ceramic
bead insulated wire. In addition, the standard J-Series thruster

main cathode was replaced with a 6.35-mm diameter, molybdenum body,
hollow cathode with a 2 % thoriated tungsten orifice plate. A

tantalum-sheathed, tantalum heater wire was used for the cathode

tip heater. Finally, the J-Series, tantalum-clad, iron baffle was

replaced with a smaller (25.4-mm diameter) molybdenum baffle. All
tests were performed using the standard J-Series, two-grid

accelerator system.
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Laboratory power supplies were used for the main and
neutralizer cathode tip heater and keeper functions, as well as for
the accelerator grid power supply. A parallel combination of two
FMPPUmain discharge supplies was used for the anode supply, el A
custom high voltage power supply fabricated by the Spellman
Corporation was used for the screen supply and could provide
voltage regulated power at up to 4.0 A and 2.0 kV. The negative
high voltage accelerator grid power supply was also voltage-
regulated and provided up to i00 mA at -2.0 kV.

All throttling tests were performed with a beam current of 3.2
A. This beam current level is the same as that used in the recent

endurance test of a 30-cm diameter ring cusp thruster 4s and was
selected for that reason. The allowable variation in net-to-total

voltage ratio at this beam current is given in Fig. 38 for a total

voltage of 1840 V and a discharge voltage of 28.5 V. These data

indicate a minimum value for the net-to-total voltage ratio of

0.29. At values of R less than this, beamlet defocussing results

in direct ion impingement on the accelerator grid, resulting in a

sharp increase in the accelerator grid current J,. This lower limit

on R is considerably less than the 0.40 to 0.55 values reported in
the literature for two-grid accelerator systems; however, similar

results have been recently obtained at NASA Lewis Research Center
which support this new lower limit. 62

This lower limit for the net-to-total voltage ratio enables a
significant power throttling capability at constant beam current

with two-grid accelerator systems. It was previously believed that

it would be necessary to use a three grid system in order to obtain

a sufficiently large power variation. The throttling

characteristics for a constant beam current of 3.2 A are given in
Figs. 39-41 where the thrust, specific impulse and total engine

efficiency are given as functions of the engine input power. These

data indicate a maximum to minimum power variation of almost 3 to
I.

Finally, it should be noted that although constant beam

current throttling has many advantages over the more conventional

variable beam current approach, there is one potentially very
serious disadvantage. That is, operation at very low net-to-total

voltage ratios implies the use of relatively large negative

accelerator grid voltages. These large negative voltages may

aggravate an already severe accelerator grid erosion problem.
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8.0 CAPACITANCE MEASUREMENT FOR ACCELERATOR SYSTEM DIAGNOSTICS

Ion engine accelerator systems typically consist of two

closely spaced, perforated electrodes. The performance of the
accelerator system is strongly dependent on the electrode spacing.

Both normal and abnormal handling of the accelerator system can

alter the grid spacing when the electrodes are at room temperature.

Furthermore, radial and grid-to-grid temperature differences

occurring during normal engine operation result in thermal

expansion effects which can alter the hot grid spacing.

Conventional techniques to measure the room temperature grid

separation include the use of feeler gauges and optical refocusing

techniques. Both of these techniques provide grid separation

information at discrete locations, but are tedious to implement and

require considerable handling of the accelerator system. Several

approaches to measuring the grid separation at normal operating

temperatures (typically 300 to 500°C) have also been investigated.

These approaches include: the use of dial indicator gauges in

direct contact with the grids 63, the use of calibrated pins attached

to the screen grid and extending through the accelerator grid

apertures _, and various optical techniques. Each of these

techniques provides grid separation information at discrete

locations with varying degrees of resolution.

The capacitance measurement technique makes use of the

relationship between the capacitance of two parallel plate

electrodes and their separation, which is given by the equation

c = eo__AA (4s)
d "

Measurement of the total capacitance of the accelerator system due

to the juxtaposition of the perforated electrodes results in a

number which is proportional to the average electrode separation.

Any change in total capacitance is an indication of a change in the
average grid separation. This technique is very easy to apply, is

non-intrusive, and can be used to provide such critical information

as the repeatability of the cold grid separation after thermal

cycling or handling operations.

In addition, the technique can be used to indicate the change

in average grid separation due to thermal effects generated by

normal engine operation. In this case, the engine would be

operated until the accelerator system reached thermal equilibrium,

at which point the engine would be shut down completely, and the

screen grid and accelerator grid leads would be switched into the

capacitance measuring circuit. The accelerator system capacitance
versus time would be recorded as the grids cooled down.

Preliminary bench tests have been performed with two sets of
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30-cm diameter J-Series grids. The first grid set has a nominal

grid separation of 0.64 mm 40.025 in). This accelerator system has

a total capacitance at room temperature of 1089 pF (including the
insulator shadow shields) as measured using a Hewlett-Packard 4280A

1 MHz C Meter. The second grid set has a nominal grid separation

of 0.38 mm (0.015 in.). The smaller grid separation for this

accelerator system resulted in a measured capacitance of 1515 pF,

which is nearly 40% greater than that for the larger grid

separation. Preliminary bench tests performed using a heat lamp to

heat the accelerator system from the screen grid side indicated

that thermal effects can induce changes on the order of 10 % in the

total capacitance. In addition, these tests indicated that after

cooling back down to room temperature the total measured

capacitance returned to its original value (within approximately

o.1%).

A second, related application of the capacitance measurement

technique is based on the use of very small pairs of flat plate
electrodes which are attached to, but electrically isolated from,

the accelerator system grids at discrete locations of interest.

The capacitance of each pair of electrodes is proportional to the

local grid separation. This technique is more difficult to

implement than the global capacitance measurement discussed above,

but provides more detailed information.

82



9.0 SEGMENTEDION THRUSTER

The use of ion propulsion in support of the Space Exploration

Initiative will require the development of individual ion engines

which can process input powers in the range of 100 kW to greater

than 1,000 kW at specific impulses in the range of 7000 to 10,000

s. Space charge effects in the accelerator system of ion engines

place an upper limit on the thrust density (and hence power

density) which ion engines can achieve at a given specific impulse.

Therefore, to increase the power and thrust capabilities of an ion

engine it is necessary to increase the area of the ion accelerator

system while maintaining a constant thrust density. The most

straightforward approach to increasing the accelerator grid area is

to simply increase the engine diameter. To maintain a constant

thrust density, as the engine diameter is increased, requires that

the grid-to-grid separation remain constant.

This requirement results in increasing values of the grid

span-to-gap ratio, i.e., the ratio of the accelerator system

diameter to the grid separation. The current state-of-the-art, 30-

cm diameter, ion accelerator system has a span-to-gap ratio of

approximately 500. The span-to-gap ratio is limited by mechanical

constraints imposed by fabrication and handling procedures, as well

as by thermal effects which serve to alter the grid separation

during normal engine operation.

Near-term development of > I00 kW argon ion engines may be

achieved through the use of the innovative Segmented Ion Thruster

(SIT) design approach. This approach uses six distinct ion source

chambers (or segments) along with six discrete accelerator systems

as suggested in Fig. 42. The six individual ion source segments

are configured to operate as a single ion engine from a single

power processor unit as suggested in Fig. 43. This single power

processor unit consists of six individual anode power supplies (one

for each ion source segment), a single positive high voltage screen

supply, a single negative high voltage accelerator supply, a

neutralizer tip heater supply and a neutralizer keeper supply. The

use of multiple anode supplies is probably the easiest way to

assure equal current sharing between the cathodes. Multiple anode

supplies with multiple cathodes were used successfully in 1.5-m
diameter ion thruster tests for operation at power levels up to 130

kW. _

The switches in the dashed box labeled "SWI" are used to

enable the anode power supplies to heat the main discharge chamber

cathodes for engine start-up. Once the cathodes have been heated,

the anode power supplies are switched to the anode electrodes for

cathode ignition and normal operation. The switches in the dashed
boxes "SW2" and "SW3" are used to isolate individual ion source

segments from the high voltage power supplies. This feature is not

essential, but enables failed segments to be removed from the
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Figure 42 Segmented ion thruster schematic with six 30-cm

diameter segments.
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system, allowing the segmented ion thruster to continue to function
at reduced thrust.

The total accelerator system area for the segmented ion
thruster is six times the area of each individual ion source

segment. This approach enables large total accelerator system

areas to be achieved through the use of smaller, more manageable

individual ion source diameters. The use of relatively small ion

chamber diameters solves the span-to-gap problem central to the

development of large area, high power ion engines. Furthermore,

each segment has its own hoiiow Cathode which operates at one sixth

the total engine discharge current. This decreased discharge

current requirement, together with the use of one cathode per

chamber, minimizes the cathode-jet problem of high-current hollow

cathodes, solves the plasma uniformity problem characteristic of

large diameter engines, and eliminates the starting problems

associated with the use of multiple cathodes in a single discharge
chamber.

The SIT engine also has the advantage of failing gracefully.

Failure of one chamber results in the loss of only one sixth of the

total engine thrust, not in complete engine failure. This feature

can also be taken advantage of to throttle the engine. Engine

throttling can be accomplished by turning off individual segments,
thus enabling a minimum 6-to-i thrust and power throttling range

(for a six-chamber SIT configuration). The SIT approach is

applicable to any individual chamber size. Projected SIT engine

performance values are given in Table 7 for individual segment

diameters of 30, 50 and 90 cm. Each SIT engine in this table is

comprised of 6 segments and is assumed to use argon as the

propellant. The power levels at the top of each column refer to

the input power to the power processor unit (which is assumed to be
93 % efficient).

The i00 kW SIT column in Table 7 refers to relatively

conservative engine performance which could be achieved using six

30-cm diameter chambers. This SIT thruster has a total grid area

equivalent to a conventional 70 cm diameter circular engine, which

is significantly beyond the current state-of-the-art, yet the
performance requirements for each individual segment are well

within current capabilities. The 130 kW SIT column refers to the

same SIT engine design as for the i00 kW SIT engine with the

exception that somewhat more optimistic segment operating

parameters are assumed. The data in this column indicate that with

the SIT design approach, a 130 kW argon ion engine operating at a

specific impulse of i0,000 s could be fabricated while requiring

almost no advancements to the state-of-the-art of engine

components.

The third column in this table indicates the performance made

possible by the SIT design approach using the 50-cm diameter ion
source under development at NASA Lewis Research Center. _ In this
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Table 7 Projected Performance of Segmented Ion Thrusters

Number of Segments

i00 kW

SIT

130 kW

SIT

Segment Diameter (cm) 30 30

Specific Impulse (s) I0,000 I0,000

Power into Power i00 130

Processor Unit (kW)

Engine Efficiency 0.71 0.71

Thrust (N) 1.36 1.83

Total Grid Area (_) 0.383 0.383

Equivalent Diameter (m) 0.70 0.70

Engine Mass (kg) 60 60

Each Segment

- Input power (kW) 15.5 21.0

- Beam Current (A) 4.75 6.42

- Discharge Current (A) 33.9 45.8

- Grid Gap (mm) i.ii i.ii

- Beam Voltage (V) 2990 2990

- Total Voltage (V) 3225 3225

- Span-to-Gap Ratio 257 257

- Screen Hole Dia. (mm) 3.69 3.69

400 kW I000 kW

SIT SIT

6 6

50 90

I0,000 I0,000

400 1,000

0.71 0.71

5.44 13.6

I.Ii 3.69

1.19 2.17

140 300

62.2 156

19.1 47.7

136 426

i. Ii 1.29

2990 2990

3225 3860

438 700

3.69 4.29

case each 50-cm diameter segment would be required to process 62

kW, with a beam current of 19.1 A and a discharge current of 136 A.

Achieving these performance values will require modest advancements

to the state-of-the-art. It should be noted, however, that argon

hollow cathodes have been operated at discharge currents of up to

150 A for as long as 24 hours, and at I00 A for over 1,000 hours. 42

In addition, the accelerator system span-to-gap ratio required for

this design is only 438, which is less than the current state-of-

the-art. This results from the higher voltage and corresponding

large grid separation characteristic of operation at a specific

impulse of i0,000 s. The total grid area for this engine is

equivalent to a ii0 cm diameter circular thruster. The data in

this column suggest that a 400 kW argon ion engine based on the SIT

design approach could be developed relatively easily.
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Finally, the last column in Table 7 indicates the projected

Performance level for a 1 MW SIT engine and the attendant

performance requirements for each individual segment. In this

case, each segment is required to be 90 cm in diameter, with an

accelerator system span-to-gap ratio of 700 and individual

discharge currents of over 400 A. These requirements are beyond
the current state-of-the-art, but are not so far beyond it as to be

unreasonable.
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I0.0 BAFFLE EROSION STUDIES

10.1 introduction

During the 1970s the 30-cm mercury ion engine, culminating

with the J-series ion engine, was developed to technology readiness

level 6. The operating life of the J-series ion engine at the 2.7

kW power level was limited by spalling of metal films which were

eroded from the baffle, a component placed just downstream of the

cathode (Fig. 44). These film flakes could become trapped between

the screen and accelerator grids and short them out.

For several reasons, inert gases have replaced mercury as the

propellant of choice for interplanetary and earth-orbital ion

propulsion systems. Erosion rates within the ion engine discharge

chamber, however, are greater with inert gas propellants than the

corresponding rates with mercury. This is due to the higher
sputter yields of the inert gases as compared to mercury, and to

the fact that inert gas ion engines are often operated at discharge

currents greater than those used on the J-series mercury ion
engine.

Data on erosion and wear rates within the discharge chamber of

ion engines operated on inert gases are limited. During the 5 kW,

xenon ring-cusp thruster wear test recently conducted at the NASA

Lewis Research Center (LeRC), the cathode starter electrode eroded

completely away within 890 hours. The neutralizer and engine

cathode orifice plates were also heavily eroded. In high current

hollow cathode testing conducted at JPL, significant erosion of
the pole piece, baffle, and other components was observed in the

vicinity of the hollow cathode operated on argon at 100 amperes, in

spite of the low discharge voltage (less than 24 volts) which was
used in the test.

Data presented in the following paragraphs summarize the

results of a three year investigation conducted at JPL on cathode

side baffle erosion and its relationship to cathode current

density. A more in-depth discussion of discharge chamber erosion
is presented in Appendix A.

10.2 Discussion

In 1987-1989, J-series ion thruster erosion testing with xenon

propellant at JPL revealed unexpectedly high erosion rates and

highly peaked erosion profiles on the cathode side of the
baffle. _'_'_ In tests subsequently conducted at LeRC _°, the erosion
rates of the cathode side of the baffle were measured to be between

40-90 times the erosion rate observed on the Mission Profile Life

Tests (MPLT) conducted on the 2.7 kW J-series ion engine operated
on mercury propellant in 1979-1981. The mechanism responsible for
these severe erosion rates was not understood.
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It has also been observed in tests at JPL that during the

first 160 hours of operation of a new cathode, the erosion rates at

the baffle were extreme, approaching 20,000 angstroms per hour.

Baffle erosion rates appear to drop significantly afterwards. Thus

preliminary indications are that the baffle erosion decreases as
the cathode ages, until a steady-state value is reached.

During testing conducted in 1988 on a high current hollow
cathode v* it was observed that a well-defined and collimated plume

was produced by the cathode when it was operated at a high emission
current. A section of the anode face plate 15 cm downstream of the

cathode was eroded, even though this face plate was at anode

potential. As a result of this testing it was suggested that a

cathode jet having ion energies of tens of electron volts might be

the mechanism responsible for the high erosion rates observed at
the cathode side of the baffle, vl

It was hypothesized that the formation of the cathode jet
was related to the current density through the cathode orifice.

Thus, for a fixed cathode emission current, increasing the cathode
orifice will reduce current densities at the cathode orifice, and

consequently minimize the effects of the cathode jet. In 1990 some

experimental data to support this conjecture were obtained at JPL
and are shown in Fig. 45. In this figure, the cathode side baffle

erosion rates from three experiments are plotted as a function of
the distance from the baffle center. In these experiments the

cathode emission currents (discharge currents) were almost

identical; the discharge voltage in all tests was 32 volts.

However, there are two significant differences in the
characteristics of the three sets of data. First, the erosion

rates for the test set which used the smaller cathode orifice are

greater than for those using the cathodes with the larger orifices.

Second, the cathode-side baffle erosion profiles are more peaked
for the test set which used the cathode with the smaller orifice.

In the case where a 1.78 mm (0.070") diameter cathode orifice and

12.7 A discharge current were used, the erosion profile is flat and
the erosion rates are lower than in the case with an 11.8 A

discharge.

Data on the ion velocity and number density in the cathode

plume were obtained at Colorado State University (CSU) and

presented to the 21st International Electric Propulsion Conference
(IEPC) in July 1990 (Ref. 72). These data show that the ion

energies could exceed 65 eV despite a plasma potential that was on
the order of 15 V. In addition these data indicate that ion energy

increased with increasing cathode emission current. The data

presented in Fig. 45 and Ref. 72 suggest that very significant
reductions in baffle erosion can be obtained by increasing cathode

orifice diameter.
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11.0 REVIEW OF ACCELERATOR GRID EROSION

Erosion of the downstream face of the accelerator grid is a

potential life-limiting mechanism in moderate or high power inert

gas ion engines. Accelerator grid erosion occurs when ions

downstream of the accelerator grid bombard the accelerator grid
surface with an energy of 200-500 eV and erode the surface in a

form of microscopic sand-blasting. During the SERT II flight tests

thruster operation was terminated by high-voltage grid shorts. °n

Analysis of data and comparison with ground tests indicated that

the shorts were due to an eroded web of the accelerator grid which
was lodged between the grids. Ground test data indicated that the

placement of the neutralizer resulted in a large quantity of slow

ions in the vicinity of the accelerator grid which eroded the grid
until a grid fragment loosened, cantilevered toward the screen

grid, and shorted out the screen and accelerator grids on both

thrusters on board SERT II. In subsequent engine designs the
neutralizer was repositioned to eliminate the neutralizer as a

source of slow ions in the vicinity of the accelerator grid.

Most of the ions extracted from the discharge chamber of an

ion engine exit the accelerator grid at high velocity, and are

subsequently neutralized approximately 0.5 mm downstream of the
accelerator grid by electrons emitted from the neutralizer cathode.

However, a fraction of these beam ions collide with neutral

propellant atoms drifting slowly out of the engine through the

accelerator system apertures and undergo charge-exchange

collisions. When charge-exchange occurs, the positive charge of

the fast ion is transferred to the slow neutral atom, resulting in

a fast neutral and a slow ion. The slow positive ion is attracted

to the negative accelerator grid and strikes it with an energy
equal to the accelerator grid voltage, causing sputter erosion.

The erosion pattern typically consists of shallow grooves

eroded between each hole, and pits located at positions equidistant

between a set of three holes, where the charge-exchange impingement

current density is greatest. Charge-exchange erosion is highly
localized, being maximum at the pits, less at the grooves, and

virtually non-existent at other locations on the accelerator grid
surface.

Data from recent tests of inert gas ion engines performed at

background pressures in the 10 .3 Pa (10 .5 torr) range indicate that

accelerator grid erosion from charge-exchange ions is severe at

these tank pressures. Pits were eroded completely through the 0.36

mmthick molybdenum grid used for discharge chamber erosion studies
described in Appendix A, as well as in the 890 hour endurance test

of a 5 kW ring-cusp xenon ion engine discussed in Ref. 157.

Because of the observed severity of the accelerator grid

erosion, a literature survey and assessment of accelerator grid

erosion were performed. Over 200 references on ion propulsion were
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examined, mostly on mercury ion engines that were tested

extensively in the 1960s through the 1970s, and a far smaller

number on cesium or inert gas ion engines. From this literature

survey there were 93 references that addressed engine lifetime, for

which accelerator grid erosion is an important consideration.

These references _I_ are grouped into 6 categories as indicated in
Table 8.

Table 8 Summary of References on Ion Engine Life

CATEGORY NUMBER OF

REFERENCES

1. SERT II flight test descriptions. 5

2. Accelerator grid erosion not addressed. 38

3. Accelerator grid erosion predictions, 12

estimates and/or wear mechanisms discussed.

4. Anecdotal descriptions that characterize 15

accelerator grid erosion as being minimal or
non-existent.

5. Accelerator grid erosion data compromised by 10
experimental difficulties.

6. Well-documented accelerator grid erosion
data.

13

Despite the extensive testing history and advanced level of

mercury ion thruster technology, there is surprisingly little
actual data on accelerator grid erosion. From this list of 93

references dealing with engine life, 65 do not mention accelerator

grid erosion at all, provide only estimates for accelerator grid

erosion, or provide anecdotal information on accelerator grid

erosion. Included in this category are all of the Mission Profile

Life Test (MPLT) descriptions on the J-series ion engine. It is

clear from the discussions in these references that accelerator

grid erosion was not perceived to be a significant life-limiting

mechanism in mercury ion engines.

Twenty-three references with accelerator grid erosion data

were surveyed. Of these, I0 were found to have experimental
difficulties that precluded an assessment of accelerator grid

erosion, leaving only 13 references that have accelerator grid

erosion data not compromised by experimental difficulties. These

references are listed in Table 9. In this table, "pit erosion"

refers to the holes etched into the accelerator grid at locations
in the grid webbing equidistant from 3 holes, "grid mass loss

(exp)" refers to the experimentally observed mass loss from

charge-exchange erosion or direct impingement current, "grid mass

loss (cal)" refers to the grid mass loss that is calculated using
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a method described in a later section, and "Uniform Current

Density" refers to the total accelerator grid impingement current
divided by the total accelerator grid surface area.

Included in Table 9 are data from the MPLT. 139 It was reported

in this reference that after 4263 hours of operating time at a beam
current of 2.0 A and an accelerator grid impingement current of 7.2

mA that, "All components external to the discharge chamber...were

examined and no quantifiable wear identified". It is surprising

that no grid mass loss or erosion data are presented in the MPLT

papers available in the literature. In addition, the experimental

result that there was no "quantifiable erosion" is surprising in

view of the results of other long duration tests. I_161 In these

tests I_,161,the erosion rate of pits formed in the central region of

the accelerator system was 3.4xi0-5 mm/hr for an accelerator grid

voltage which corresponds to a molybdenum grid sputter yield by

mercury ions of 0.55. In Ref. 161 the pits eroded almost

completely through the grid, and in Ref. 160 the pits were eroded
completely through the 0.51 mm thick grid.

The MPLT life-tests were performed with lower accelerator grid

voltages than the tests I_,161discussed above, resulting in a sputter

yield for mercury on molybdenum which was only 0.27, or

approximately a factor of two less than earlier long duration
tests. However, the total impingement current in the MPLT was

almost double that used in the 10,000 hour test of a 30-cm mercury
ion engine (Ref. 161), because of the greater beam current. If the

accelerator grid used in the MPLT test of thruster J1 had eroded in

a pattern similar to that observed in Ref. 161, then it is

estimated that there should have been approximately 0.1mm (0.004")

of erosion on the J1 thruster accelerator grid, an amount which

should have been easily quantifiable on a grid which is only 0.38
mm (0.015") thick.

Comparisons of accelerator grid erosion data obtained in tests

performed on thrusters in different test facilities are valid only
if the grids erode in the same way on all the tests. It is

uncertain if this is the case for several reasons including, for

example, the fact that the MPLT thrusters used small hole

accelerator grid (SHAG) optics as opposed to the large hole

accelerator grid optics used in the i0,000 hour test. l_l However,

it should be noted that the SHAG optics used in the acceptance

testing of thruster Jl0 showed visible accelerator pit and groove

erosion after only approximately 20 hours of operating time. It

seems surprising that accelerator grid erosion was not quantified

in the MPLT test series conducted on the J-series Hg ion engine.

Another method used to assess grid erosion observed in

different tests reported in the literature was to calculate the

mass loss of the accelerator grid using published sputter yields

and to compare the mass loss prediction with experimental data. In

calculating the grid mass loss, it was assumed that all of the
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accelerator grid impingement current was charge exchange current

that eroded grooves or pits into the accelerator grids with ion

energies equal to the applied accelerator grid voltage (which is

normally in the range of 200-800 volts). This assumption neglects

several important effects including the ion focusing which creates

the pits and groove patterns, as well as the emission of secondary

electrons from the accelerator grid. Secondary electrons resulting
from the ion bombardment of the grid surface add to the measured

accelerator grid "impingement" current. In addition, in Fig. 46 it

is shown that charge-exchange ion energies are a function of where

the ions are formed. Since sputter yield, and hence the erosion

rate, is a strong function of the ion energy, the assumption that

all accelerator grid impingement current strikes the accelerator

grid at the full accelerator grid voltage and the neglect of

secondary electron emission should result in mass loss predictions

which are too high. The mass loss of the grids is calculated using

the following expression:

m L = J.CiY re.oiL. (49)

As can be seen in Table 9, the largest grid mass loss value

was obtained during the recent 895 hour ring-cusp, xenon thruster

life test *_, followed by the value obtained during the I0,000 hour

life test of a 30-cm Hg ion thruster. 16l

The ratios of calculated grid mass loss to the corresponding

experimentally observed values vary from 0.4 to 4.9, with most

ratios between 1.6 - 4.9. Those ratios that are greater than i are

probably due to actual grid erosion rates that are reduced due to

facility effects such as oxidation, surface nitriding of the

molybdenum grid, back-sputtering of beam target material onto the

grid, or to uncertainties in the incident ion energies. In Ref.

164, where the ratio of calculated to experimentally observed grid

mass loss is 0.4, the most likely explanation is that there was

significant erosion of the grid due to direct ion impingement.

These ions would have energies far higher than those assumed for
the mass loss calculation, because these ions strike the

accelerator grid with the full potential difference between the

accelerator grid and the screen grid.

The uniform current density of charge exchange ions at the

grid surface is calculated with the assumption that all accelerator

grid impingement current is charge exchange current. This

impingement current is divided by the total grid surface area

(total grid area minus the grid hole area) to obtain the uniform
charge-exchange impingement current density in mA/cm 2. Values for

this parameter are listed in Table 9, in which the test data are

ordered according to the uniform charge exchange current density.

The product of the uniform charge exchange current density and

the sputter yield corresponding to the applied accelerator grid

voltage is calculated and compared to the actual grid mass loss and
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pit erosion rates, shown in Tables i0 and Ii. There is generally

Poor agreement between these calculations and the measured grid

mass losses, but there is generally very good agreement between

these calculations and pit erosion rates. There are no grid

erosion data for the J-series MPLT; however, the calculated value

of uniform current density multiplied by sputter yield for the

thruster J1139 is equal to the value calculated for the I0,000 hour

30-cm Hg thruster test. 161 It is of interest to note that the

uniform charge-exchange current density and pit erosion rates for
both Ref. 160 and Ref. 161 are almost identical.

Table 10

Reference # Grid Mass Loss

(g)

157

158 2.0 14.0

154 0.2 7.7

163 3.7

162

Grid Mass Loss Ordered by J_Y

JaY
(mA/cm 2)

17.8 18.4

0.6

5.0

2.2

Table 11

Reference #

Pit Erosion Rates Ordered by Ja._Y

Pit Erosion Rate

(mm/hr)

157 40.0 18.4

158 4.1 14.0

154 9.5 7.7

160 3.4 5.0

161 3.4 3.9

159 0 1.7

0.7155 0.9

Examination of the erosion pattern on the downstream face of

the accelerator grid used during the 895 hour ring-cusp engine life

test l_, as well as on the accelerator grid used in the discharge

chamber erosion studies described in Appendix A, shows that pits

eroded into the grids contribute approximately 33% of the total

volume removed from the grid, with the rest coming from material

etched from both the upstream side of the pit and from grooves

eroded into the downstream face of the grid. Unfortunately,

erosion rate data at these sites are virtually non-existent.
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Using measured pit erosion rates and known grid sputter

yields, the current density at the pit locations can be calculated.

There is some uncertainty in this calculation due to the

characteristics of ion sputtering. As a pit begins to form, the

pit walls present a surface which is at an angle to the incident

ion. Material sputter yields are a function of the ion angle of

incidence, and achieve a maximum at approximately 40 degrees to

normal. Consequently, the sputter yield of the inclined surface

may be up to 50% greater than the nominal sputter yield•

Alternatively, material sputtered from the pit walls may be

redeposited onto the bottom of the pit, thus reducing the effective

sputter yield. The net effect of these competing processes is

unknown. It is speculated that the effective sputter yield of the

molybdenum grid is somewhat higher due to the dependence of sputter

yield on the angle of incidence, and that material eroded from the

pit bottom probably deposits onto the pit sidewalls, creating the

deep pits seen in severely eroded grids.

The current density calculated at the pits, divided by the

current density calculated assuming a uniform distribution of the

charge exchange ions, results in fractions ranging from 2.0 to 6.3

for the data in Table 9, with most values in the range of 4.0-6.0.
The one exception is for the data from Ref. 160, in which a

fraction of 0.38 was calculated. It is unknown why the pit erosion
rate for this test was so low.

The results of this study on accelerator grid erosion data are
summarized as follows:

. Actual experimental data on accelerator grid erosion are
limited.

u It was generally perceived in the 1970's and early 1980's

that accelerator grid erosion was not a life-limiting

mechanism for 2.7 kW Hg ion thrusters with a design

operating life of 15,000 hours.

. There are no published accelerator grid erosion data for
the J-series MPLT thruster tests.

• Significant accelerator grid erosion was observed in long
duration tests of low power (< 2 kW) Hg ion thrusters.

•

.

•

There is a reasonably good correlation between observed

pit erosion rates and the product of the uniform charge

exchange current density times the grid sputter yield.

The correlation between calculated grid mass loss and

experimental data reported in the references is generally

poor.

Ja/Jb was generally 0.003-0.006.
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11.1 Implications for Xenon Ion Thruster Accelerator Grid Life

Accelerator grid erosion in xenon ion thrusters is expected to
be greater than in mercury ion thrusters. This is due primarily to
increased molybdenum sputter yields (Fig. 47) when using xenon,
and to the fact that, because xenon is a lighter atom than
mercury, beam voltage is less and hence beam current is greater

(for a fixed I_ and beam power). Greater beam current implies that
more charge-exchange ions will be created and available to erode

the downstream face of the accelerator grid.

Screen grid life was historically defined _ as the time

required to erode the grid to one-half of its original thickness.

However, it has been implied in Refs. 138, 146 and 157 that the

formation of pits in the accelerator grid, even if they pierce the

entire grid thickness (through-pits), is not a life limiting

phenomenon. In Ref. 146 a cesium ion engine was operated with

through-pits etched into the accelerator grid with no apparent
deleterious effects. In other references lm'IM'*n it has been

suggested that a suitable definition for accelerator grid operating

life is the time required to erode completely through the grooves

etched into the grids. Under this definition, the accelerator grid

is considered to be a functioning engine component until it begins

to disintegrate. No other definitions for accelerator grid life
were found in the literature.;

Long duration ion engine tests, however, suggest that the end

of the useful accelerator grid life will occur before the grooves

erode completely through the accelerator grid webbing. Both

engines used on the SERT II flight test were rendered temporarily

or permanently inoperable when small sections of the accelerator

grid, weakened by severe accelerator grid erosion, appear to have

cantilevered toward the screen grid, creating a screen to

accelerator grid short. _ In Ref. 144, charge-exchange ions

travelling upstream through pits that were eroded completely

through the accelerator grid were reflected by the screen grid

potential back to the accelerator grid. Material eroded from the

upstream surface of the accelerator grid by these ions formed

deposits onto the downstream face of the screen grid, which, in

post-test handling, flaked off and lodged between the screen and

accelerator grids. In Refs. 64 and 20, high rates of grid arcs and

recycles were believed to be due to these screen grid deposits. In

Ref. 161, high recycle rates were attributed to flaking or loss of

electrode structural stability due to excessive grid wear. In Ref.

157, whiskers from charge-exchange and graphite target erosion may

have caused a high rate of recycles which frequently extinguished

the discharge.

In addition to the difficulties cited above in operating the

ion engines until the grooves erode completely through the grids,

ion engine performance may degrade significantly. The pits erode

through the accelerator grid far sooner than do the grooves. As
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they enlarge, the grid open area increases, allowing more neutral

atomsto escape the discharge chamber• The increased loss rate of

neutral gas atoms increases the production of charge exchange ions,

which will increase the erosion rate of both the pits and the

grooves• The possibility exists that the pits will enlarge to such

a degree that, due to the decrease in discharge chamber pressure,

the rate of ion production will be reduced in the discharge

chamber. This scenario also illustrates the difficulty of trying
to predict ion engine grid life based on short duration tests.

The results of the experimental data listed above and the SERT

II flight test experience suggest that a reasonable definition for

the end of accelerator grid life may be the time required to erode

pits completely through the face of the accelerator grid.

Termination of ion engine operation when through-pits are created

will prevent the formation of sputter deposits on the downstream
face of the screen grid and thus eliminate the excessive

high-voltage arcing events caused by these deposits• Termination

of ion engine operation prior to excessive groove erosion will

prevent the loss of structural integrity of the grids•

11.2 Xenon Ion Engine Accelerator Grid Erosion Rate Estimate

The best data for xenon ion engine accelerator grid erosion

were obtained in the recent life test 157performed on a ring-cusp ion

engine operated at 5 kW. In this test, grooves 0.076 mm deep were

eroded into the downstream face of the accelerator grid in 906
hours of operating time; pits were eroded completely through the
accelerator grid in less than 895 hours• The ultimate accelerator

grid life was estimated to be 11,500 hours• This estimate was

based on the following assumptions and data:

lo Accelerator grid life is defined as the time required to

erode completely through the grooves formed in the middle

portion of the grid, where erosion rates are highest.

•

3.

Grid thickness is 0.36 mm.

The groove erosion rate is 8.4 x I0"5 mm/hr, resulting in

a grid life of 4200 hours for the conditions under which

the test was performed.

• Of the 17.5 mA of charge-exchange current, 64% are

"facility effect" ions, created due to the high

background pressure in the vacuum tank which was used for

the life test. It was assumed that in space-like

conditions, the charge-exchange current would be only 6.2
mA.

Using these assumptions, the accelerator grid life due to groove

erosion is 4200 hours; in space conditions this life is increased
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by a factor of 2.8 due to the decrease in accelerator charge

exchange current:

(17.5 mA)/(6.2 mA) x (4,200 hrs) = 11,854 hrs.

In reality, a useful grid life time of this value may be difficult
to achieve•

• First, it may not be possible, as discussed above, to

operate the engine until grooves are eroded completely

through the grid.

. Second, the groove erosion rate may not remain as low as

8.5xl05mm/hr, due to increased pit erosion and increased

charge-exchange ion production as the accelerator grid
erodes.

• Finally, the ratio Ja/Jb in space may not be as low as

0.0019. Historical data from Table 9 suggest that

typical values for this ratio will be 0•003-0.006•

If the historical value of 0.003 is used for J,/Jb, then grid life
is calculated to be

(0.002/0.003) * (11,854 hrs) = 7,902 hrs

Grid life, defined as the time required to erode pits through

the accelerator grid, can be calculated using the following

assumptions:

. The uniform charge exchange current density is 0.036

mA/cm 2.

. The charge exchange current density at pit locations is

in the range of 1 to 6 times the uniform current density.

• The erosion rate, assuming a uniform current density, is
6.4xi0 -5 mm/hr.

The time required to erode through-pits into the 0.36 mm thick grid
would be calculated as follows:

Minimum

Pit Erosion (0.36 mm)/(6.4xl0 "5 mm/hr) x 1 = 5,625 hrs

Maximum

Pit Erosion (0•36 mm)/(6.4xl0 5 mm/hr) x 6 = 937 hrs.

Another way to estimate the accelerator grid life is to assume

that the pits appeared after 906 hours of operating time, and that

in space the charge-exchange current can be reduced by a factor of
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Then the expected grid life would be

(906 hrs) x (2.8) = 2,537 hrs.

These grid life estimates are all substantially less than that

made in Ref. 159 because a different set of assumptions were used.

Additional testing is required to accurately determine xenon ion

engine accelerator grid life, but preliminary analyses indicate
that accelerator grid erosion is a severe problem in xenon ion

engines.
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THE EFFECT OF NITROGEN ON XENON ION ENGINE EROSION

Charles E. Garner*, John R. Brophy*, L.C. Ple&s+, and John W. Barnett**

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, Ca 91109

Erosion studies were performed on a 30-cm

diameter J-series ion engine modified for operation on

xenon propellant. The erosion rates of molybdenum and
tantalum badges placed at different locations within the
discharge chamber were measured as a function of the
percentage of nitrogen (by mass) added to the xenon
propellant. Reductions in the erosion rates of these badges
of a factor of 8 to 50 were observed at nitrogen addition

fractions between 0.5 to 2.0 percent. Reductions in
cathode-side baffle erosion were achieved by adding

nitrogen to the xenon propellant or by increasing the
cathode orifice diameter. Analyses show that no

significant degradation in ion engine performance should
be expected at these nitrogen mass fractions. XRD, XPS
and Auger analyses indicate the existence of nitrogen and
nitrides in the surfaces of some but not all of the badges

used in the tests where nitrogen was added to the xenon.

Difficulty in identifying surface nitrides in the samples
may be due to the existence of surface oxides and
contaminants, or to the small thicknesses of the nitride

layers.

IIKIRO.D_k_]_,O_

Ion engine operating life is limited, in-part, by
ion sputter erosion of surfaces in the discharge chamber
which are at or near cathode potential. Internal engine

components subject to ion sputtering include the screen
grid, the cathode starter electrode (keeper), and in the J-
series ion engine, the baffle and pole piece assembly. For
several reasons, inert gases have replaced mercury as the
propellant of choice for interplanetary and earth-orbital ion

propulsion systems. Erosion rates within the ion engine
discharge chamber, however, are expected to be greater
with inert gas propellants than the corresponding rates
with mercury. This is due primarily to the higher sputter

yields of the inert gases as compared to mercury.

* Member of the Technical Staff, Electric Propulsion and

Plasma Technology Group. Member AIAA.

+ Member of the Technical Staff, Electric Power Systems

Section.

** Supervisor, Electric Propulsion and Plasma Techno-

logy Group. Member AIAA.

Data on erosion and wear rates within the

discharge chamber of ion engines operated on inert gases
are limited. During the 5 kW, xenon ring-cusp thruster
wear test recently conducted at the NASA Lewis Research
Center O-,eRC), the cathode starter electrode eroded
completely away within 890 hours. 1 In high current
hollow cathode testing conducted at JPL, significant

erosion of the pole piece and other components was
observed in the vicinity of the hoUow cathode operated on
argon at 100 amperes, 2 in spite of the low discharge

voltage 0ess than 24 volts) which was used in the test. In
1988 a screen grid life of 7000 hours 3 was inferred from a
10 kW xenon thruster life evaluation test; however, there

was a good deal of uncertainty in the screen grid life
estimate.

In 1987, J-series ion thruster erosion testing 4

revealed unexpectedly high erosion rates and highly peaked
erosion profiles on the cathode side of the baffle, a result
substantiated by later tests 3. During testing of a high
current hollow cathode2 it was observed that a well-defined

and collimated plume was produced by the cathode when it
was operated at a high emission current. A section of the
anode face plate 15 cm downstream of the cathode was
eroded, even though this face plate was at anode potential.
As a result of this testing it was suggested that a cathode

jet having ion energies of tens of eV might be the
mechanism responsible for the high erosion rates observed
at the cathode side of the baffle 2" At sufficiently high

discharge currents this cathode jet might result in increased

screen grid erosion.

Techniques which could be used to reduce
discharge chamber erosion include reducing the discharge

voltage, which reduces the energy of the spuuering ions,
and reducing the propellant utilization efficiency

(propellant utilization efficiency is defined as the fraction
of the neutral propellant flow which is ionized and
extracted as beam ions), which reduces the fraction of

multiply charged ions. However, it may be desirable to
operate ion engines at the highest possible discharge
voltage and propellant utilization to reduce the number of
neutrals escaping from the discharge chamber. These
neutrals are responsible for the creation of charge-exchange
ions which can erode the accelerator grid at unacceptably

high rates. 1 Thus, internal component erosion may be

traded against accelerator grid erosion.

Previous testing of J-series mercury ion engines
indicated that the presence of certain facility background
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gases reduced molybdenum screen grid erosion. 5"7
Subsequently it was proposed 8 that small quantities of
nitrogen added to the mercury propellant could reduce
discharge chamber component erosion and extend the
useful life of the engine. Preliminary data4, 9 have

suggested that the addition of small quantities of nitrogen
to the xenon propellant reduces erosion within the

discharge chamber of xenon ion engines. It was proposed 6
that the mechanism responsible for the reduced erosion

rates observed when nitrogen or other facility gases are
present within the discharge chamber is the formation of
sputter-resistant oxides or nitrides that have lower ion

sputter erosion rates than the native metal. However,

there have been no analyses to verify the formation of
these sputter-resistant compounds.

This paper presents the results of a continuing
investigation of the effects of the addition of small

quantities of nitrogen on discharge chamber erosion within
xenon ion engines. The erosion rates for erosion badges
placed at the cathode side of the baffle, the discharge side
of the baffle, near the screen grid, and at the cathode pole
piece are presented as a function of the percentage of
nitrogen added to the xenon propellanL Erosion of the

cathode side of the baffle and its relationship to cathode
current density are discussed. Finally, the results of
various techniques used to analyze the surface of the
erosion badges will be reviewed.

EXPERIMENTAL PROCEDUI_I::.

Erosion tests were performed using a J-series 30

cm ion engine modified for use with xenon propellant. J-
series ion thrusters, developed approximately 10 years ago
at LeRC, employ an axially diverging magnetic field in

the discharge chamber to increase engine efficiency. The
engine was operated in a stainless steel vacuum chamber

2.3 meters in diameter and 4.6 meters in length, and
pumped by silicone-based oil diffusion pumps. A liquid
nitrogen cryo-liner, which consisted of a stainless steel
cylindrical shroud 2.1 meters in diameter and 3.1 meters in

length, was used to cold-trap facility gases such as water
vapor during testing. Vacuum tank pressure was measured
using a calibrated ionization gauge tube and controller.

After chilling the eryo-liner the no-load tank Lgressureprior
to flowing xenon into the tank was 1.Sx10 "t torr or less.

Tank pressure during thruster operation was typically
2.9x10 "5 torr.

Erosion badges, polished to a mirror-like finish,
were placed in the discharge chamber at the locations

shown in Fig. 1. The erosion badges were polished to the
specifications shown in Table 1. The screen grid erosion
badges were hung by a 0.254 mm diameter tungsten wire
on the centerline of the thruster, approximately 10 mm
from the screen grid. Each end of the tungsten wire was

wrapped around an Alnico magnet retainer and tightly
stretched to minimize sag. Because the tungsten wires
were tied to the magnet retainers, the screen grid erosion
badge was at screen potential. Tantalum erosion badges

were mounted to the inner diameter of the cathode pole
piece using stainless steel screws. The tantalum baffie and

all the tantalum erosion badges used in the experiments
were machined from a single sheet of electron-beam melted
tantalum. Similarly, all of the molybdenum erosion
monitors used in the tests were machined from a single
sheet of electron-beam melted, low carbon molybdenum.

Screen Grid Badge

CATHODE -- _ _.

"-- /t

//
/i"

_'10 Iybdenurn __

Grtos

Fig. 1. Schematic diagram of the ion engine discharge
chamber showing the locations of the erosion
badges.

TABLE I. Erosion Badge Polishing Specifications

Badge Surface Surface
Material Roughness Flamess

(Angstroms) (Angstroms)

Molybdenum + 75 _+ 75
Tantalum + 200 + 75
304 Stainless -+ 50 -+ 50

The polished erosion badges were masked using
either 0.005" thick tantalum or 0.001" thick tungsten
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Fig. 2. Simulated profilometer trace used to determine the depth of the trench eroded into the

erosion badge by discharge chamber ions.

foils. Electric Discharge Machining (EDM) was used to
pattern the tungsten masks, and the tantalum masks were
cut and patterned manually. Discharge chamber
component erosion rates were determined by measuring the
trench depth eroded into the unmasked portions of the
erosion badges by discharge chamber plasma ions. A
profilometer capable of resolving surface features as low as
20 angstroms was used to measure trench depths.

Trench depths from the profilometer traces were
determined as follows. The uneroded surface height
(baseline height) of the sample was determined as an
average of peaks and trough heights in the uneroded region
of the sample (Fig. 2). The same procedure was used for
the etched regions, with only a 0.32 mm long region
considered for purposes of determining the trench depth of
the sample. This 0.32 mm region is 12.5 mask
thicknesses away from the mask edge: previous
experimental data 4 suggest that this is a suitable distance
to minimize mask effects on the etch rates of the erosion

badges. Furthermore, it is far enough away from the
sample edge such that there is no spurious data due to roll-
off at the badge edges. The average erosion rate was
determined subjectively by estimating an average surface
location between the peaks and troughs in the eroded
region, and then calculating the difference in heights
between this subjective guess and the baseline.

Uncertainties in the erosion depth measurements
were determined by adding the peaks in the baseline to the
troughs in the eroded region to determine the maximum
erosion rate, and troughs in the baseline to peaks in the
eroded region to determine the minimum erosion rate.
The uncertainties in the erosion rate measurements were

due primarily to the formation of deep valleys and high
peaks in the portions of the badges exposed to the
discharge plasma ions (Fig. 2). Because the engine was
operated for only 24 hours during each test, and because of
the formation of peaks and valleys in the eroded region,
there is a significant amount of uncertainty in some of the
erosion data. 24-hour test periods were selected to allow

many experimental conditions to be investigated. This
technique could be used with longer duration tests to
greatly reduce the measurement uncertainties. Long-
duration discharge chamber erosion studies were beyond
the scope of this work and are a topic for future
investigations.

A schematic diagram of the propellant system
used to operate the ion engines and to introduce nitrogen
into the xenon is given in Fig. 3. The flow rate of xenon
and nitrogen into the ion engine (exclusive of facility
back-flow) was measured using the flow meters labelled
"Xenon" and "Nitrogen" respectively. As indicated in Fig.
3, there is a micrometer valve located downstream of the
flow meter used to measure the total xenon flow rate into

the engine. The pressure drop developed across the
micrometer valve served to minimize the diffusion of

nitrogen upstream to the xenon flow meter, a feature
which is essential to the accurate determination of the
xenon flow rate for those tests performed with nitrogen

addition. The propellant system was made leak-tight by
closing hand-valves HV-1 through HV-3, pressurizing the
propellant lines to the pressure used during erosion testing
(2.52x10 5 Pa), measuring the leak rate, and eliminating

any leaks found, down to the resolution of the flow meters
(0.1 seem). Leaks downstream of the hand valves were

checked by plugging connections leading into the ion
engine or by plugging the cathode orifice.

The xenon and nitrogen thermal mass flow
meters labelled "Xenon" and "Nitrogen" were calibrated at
the manufacturer's calibration facility using a primary
calibration standard. Calibration of the flow meter on
nitrogen showed that the flow meters have a very linear
response on nitrogen. The calibration on xenon, however,
revealed that the correction factor for xenon (required when

a flow meter is used for measuring the flow rate of one gas
but was calibrated on a different gas) to nitrogen varied
with flow rate. The results of this calibration are shown

in Table II.
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Fig. 3. Schematic diagram of the propellant system used for the erosion tests.

TABLE II. Calibration of lhe Xenon Mass Flow Meter

Calibrated Indicated Correction

Xenon Nitrogen Factor
Flow Flow

(_cm) (_cm)

5.05 6.86 1.36

lO.O 13.14 1.31

20.0 25.40 1.27

25.3 31.92 1.26

50.0 65.63 1.31

75.0 119.40 1.59

100.0 199.60 2.00

The correction factor is seen to vary as a function
of flow rate, with a minimum at approximately 25.25
sccm true xenon flow. It is likely that the correction
factors for thermal mass flow meters are a function of the

design of the particular mass flow meter. Since accurate
measurement of the xenon flow rate was critical for these

tests, careful flow rate calibrations at the mass flow rates
of interest were conducted.

After the propellant system was assembled, the
mass flow meters were recalibrated in-house using a

bubble volumeter. Analysis of the bubble volumeter
calibrations showed that these calibrations were within

1.5% of the calibration values from the primary standard.

A fourth-order polynomial curve fit was used to interpolate
between the calibration points. The nitrogen flow meter
was calibrated in a similar manner, and the erosion tests
were conducted at calibrated nitrogen mass flow rates to
eliminate uncertainties in interpolating between calibrated
data points. An analysis of the calibration data showed
that all data points for both the xenon and nitrogen
calibrations fit within two standard deviations and met the
Chauvenet criteaion 10 for acceptable data.

Back/low of xenon or nitrogen into the
ion engine was calculated using the method developed by
Wilbur et. al. 11 The largest source of error in the

uncertainty analysis of the xenon engine flow was the
backflow calculation. This was due to uncertain

knowledge of the local tank wall or liquid nitrogen liner
temperatures, which affect the rate at which facility gases
backflow into the thruster. Tank wall and cryo-liner

temperatures were measured with thermocouples at three
locations during testing. The backflow of nitrogen and
xenon, both a function of tank pressure, were calculated
and added to the values of xenon or nitrogen injected into

the engine through the propellant system. The total
xenon flow, the sum of the flow through the xenon meter
and the backflow, was kept constant.

In most tests a computer data acquisition and

control system monitored and controlled the engine
discharge voltage, cathode xenon flow rate, and total
engine xenon flow rate. Control of the discharge voltage
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was maintained to within + 0.5 % by varying the cathode
flow. The total flow of xenon into the ion engine was
fixed at 32.9 seem, which was the sum of the "XENON"

flow meter flow and the computed backflow into the
engine. The propellant utilization efficiency of 0.91 was
corrected for facility backflow but not for doubly charged
ions. Under computer control, the backflow was
continuously calculated and the main flow adjusted such
that the total engine flow remained constant. The
discharge current was fixed at 11.8 amperes.

The erosion tests were conducted in the following

manner. Erosion badges were placed in the discharge
chamber, with the polished face of the screen grid badge
facing the cathode side of the discharge chamber. The
cathode side baffle erosion badge was placed such that the
polished tantalum surface faced the cathode. The main
discharge side baffle erosion badge was place with the
polished molybdenum surface facing the sssssssss_eengrid. The
vacuum tank was then pumped to 5x10 "7 tort with the

propellant lines open to vacuum up to the xenon and
nitrogen bottle valves. Next the liquid nitrogen cold trap
was cooled until the no-load tank pressure was at 1.5x10-7
or less. Nitrogen at the desired flow rate was flowed into
the vacuum tank and the tank pressure was noted. The
backflow of nitrogen into the ion engine was calculated
using Eq. (1),

N2 Backflow = K (Tank Pressure
- 0.25 x ( No load Tank Pressure ) ) (1)

where K is a constant determined by the vacuum _ wail
temperature, tank pressure, and grid geometry. 1 1
(Previous residual gas analyses 9 indicated that 75% of the
vacuum Constituent species at the no-ioad tank pressure
after the cold trap has been chilled was nitrogen). The
propellant lines were then pumped out to high vacuum.
The propellant lines were re-pressurized to 2.52x105 Pa

with the nitrogen flow controller off and hand valves HV-1
to HV-3 closed. After at least 30 minutes the flow meter

values were checked for any indications of zero shill

Table III. Ion Engine Operating Conditions Used for
Erosion Testing

Beam Current (A) : 2.0
Beam Voltage (V) : 1100
Discharge Current (A) : 11.8
Discharge Voltage (V) : 32.0
Cathode Flow Rate (seem) : 2.5 - 4.0
Total Xenon Flow Rate (seem) : 32.9

eV/Ion : 211

Prop.Util. : 0.91

The tests were run for a period of 24 hours. After
a minimum cool-down period of 3.5 hours, the vacuum
tank was vented to atmosphere and the erosion badges were
removed from the engine and replaced with a new set of
erosion badges. The position of the screen grid erosion
badge was noted before and after each test to insure that
this badge had not moved during tank opening or closure.
The cathode orifice _eter was measured before and after
each test. The cathode orifice diameter decreased from a
diameter of 1.20 mm at the start of run #1 to 1.10 mm at
the end of run #9. The decrease was due to a small

quantity of deposit of unknown origin which partially
closed the cathode orifice.

The fhst and last tests conducted were baseline

tests to measure the erosion rates of discharge chamber
components when no nitrogen was added to the xenon. In
between the baseline tests, nitrogen in varying quantifies
was added to the xenon and component erosion rates were
measured. Three tests were conducted at a concentration of
approximately 0.5% nitrogen by mass added to the xenon
for the purposes of checking repeatability of the results.

I_ESULTS AND DISCUSSION

Table IV describes the tests in the order in which

they were conducted.

Engine start-up was accomplished by flowing
xenon through the engine and neutralizer cathodes and
gradually increasing the cathode tip heater power over a Test
period of approximately one hour. For those tests #
conducted with nitrogen addition to the xenon, the
nitrogen was mixed with the xenon propellant at the start
of the tip heat cycle. After one hour the ion engine 1
discharge was started and was run with a discharge current 2
and voltage of 11.8 amps and 32 volts, respectively, for 3
approximately five minutes. Beam extraction was then 4
initiated, with an additional five minutes required to 5
achieve the correct engine operating conditions. When 6
these conditions were achieved, the run time clock was set 7
to zero hours and the erosion test was started. The engine 8

operating conditions used for the tests are shown in Table 9
ITI.

Table W. Ion Engine Discharge Chamber Erosion
Testing

Test %N 2
Duration Added To

0"h's) Xenon Comments

24.0 0
24.0 1.19
24.0 0.51
24.0 0.51
24.0 0.51
24.0 0.26

24.0 2.06
24.0 0
24.0

Baseline test

Last baseline test
LN2 liner not

cold-trapped
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It is useful to compare ion engine erosion data
obtained both with and without cold-trapping water vapor
and other volatiles in the vacuum tank, so that

comparisons of component erosion rates between the two
cases can be made. In test #9, the vacuum tank cryo-lincr

was not chilled with liquid nitrogen, and water vapor
outgassing from the tank walls was not cold-trapped,
resulting in increased backflow of oxygen into the ion

engine. The nitrogen and water vapor partial pressuresin
the vacuum tank were not measured in these tests;

estimates of the nitrogen and water vapor partial pressures
were made, based on a tank pressure measurement that was
taken while no xenon was flowing into the vacuum tank.
Backflow rates for nitrogen and oxygen were then
calculated. It is important to note that, in test #9, water
vapor was probably the majority constituent in the
vacuum tank background. Data from these tests are
included in figures which plot erosion rate as a function of
the percentage of nitrogen added to the xenon, and are
denoted by grey circles.

The effects on component erosion rates of adding
small quantifies of nitrogen to the xenon propellant are

depicted graphically in Figs. 4-8. There is significant
uncertainty in some of the data due to the surface profiles

created by ion bombardment of the erosion badges during
engine operation. In general, however, there is a direct
correlation between the percentage of nitrogen added to the
xenon and the reduction in component erosion rate.
Erosion rates of all samples tested decreased as the
percentage of nitrogen added to the xenon increased. The

erosion rates of all materials tested dropped rapidly up to a
nitrogen concentration of 0.5%; thereafter the erosion rates

continued to decrease with increasing nitrogen
concentrations, but at a far reduced rate. The results of

tests #4 through #6, and baseline tests #1 and #8, show
that the data are repeatable.

A possible explanation of the observed
phenomena is that the presence of nitrogen results in the
formation of a sputter-resistant nitride. As the
concentration of nitrogen increases, nitride surface
coverage increases until it is complete and the addition of
more nitrogen has little or no effect on the erosion rate of
the erosion badge.

SCREEN GRID EROSION

The side of the screen grid facing the cathode is
eroded by discharge chamber plasma ions with energies at
or near plasma potential. Grid life time is typically
defined as the time required for one-half of the grid
thickness to be eroded. For the J-series mercury ion

engine operating at 2.6 kW and a discharge voltage of 32
volts, the screen grid erosion rate during the Mission
Profile Life Test (MPLT) was determined to be 64
angstroms per hour at the center. 12 In this test,

conducted at 2.7 kW and a discharge voltage of 32 volts,

the baseline (no nitrogen added to the xenon) erosion rate
of the molybdenum screen grid erosion badge placed at the
center of the screen grid was approximately 255 angstroms

per hour, a factor of almost four greater than that obtained
during the MPLT.

It is difficult to make an exact comparison of the
two erosion rates, however, because the plasma uniformity
and doubly charged ion content of the J-series ion engine
operating on xenon have not been sufficiently
characterized. It is reasonable to expect, however, that the
screen grid erosion rate of the ion engine used for this test

would be greater than the corresponding rate obtained with
mercury because of increased discharge chamber currents
and xenon sputter yields. Figure 4 shows that the addition

of 0.5% nitrogen to xenon reduces screen grid badge
erosion by a factor of 5. The addition of nitrogen at a rate
of approximately 2.06% reduced screen grid badge erosion
by a factor of 19.6, to a total of 13 angstroms per hour.
Typical grids are approximately 0.381 mm thick; thus,
for the thruster geometry and operating conditions used,

the screen grid could theoretically be operated for over
146,500 hours before half of its thickness would be

eroded. However, if no nitrogen were added to the xenon,
the useful operating life would be under 7500 hours based
on these data. The addition of nitrogen to the propellant
may be a significant life-enhancing technique in
developing high power (> 10 kW) inert gas thrusters.
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Fig. 4. Plot of the erosion rate of the molybdenum

screen badge vs the percentage by mass of nitrogen

added to the xenon propellant.

123



BAFFLE EROSION: DISCHARGE SIDE

The 38.1 mm diameter molybdenum baffle facing

the screen grid was masked by a 0.001" thick tungsten
foil. The unmasked portion of the baffle consisted of a

cross-shaped pattern 20 mm in diameter. Spacially
uniform erosion rates at all locations exposed to the

discharge chamber plasma were observed in all tests,
including when nitrogen was added to the xenon (Fig. 5).
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Fig. 6 shows a plot of the erosion rates of the
discharge side of the baffle as a function of the percent by
mass of nitrogen added w the xenon. The erosion rates at o _ 600

the discharge side of the molybdenum baffle were generally

2-3 times greater than those measured at the screen grid, _
presumably because of the higher plasma density which z
exists at this location. The shape of the curve in Fig. 6 is _ ,400
similar to that of the molybdenum screen erosion curve o

shown in Fig. 4. At a nitrogen addition fraction of 0.5%,

the molybdenum erosion rate at this location was reduced
by almost a factor of 4 compared to the baseline erosion 200
rate. At a nitrogen fraction of 2%, the erosion rate was
reduced by a factor of almost 10.
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Fig. 6. Plot of the erosion rate of the discharge cham-
ber side of the molybdenum baffle vs the % nitrogen
by mass added to the xenon.

BAFFLE EROSION: CATHODE SIDE

The cross-shaped tungsten foils used to mask the

molybdenum erosion badges facing the discharge chamber
were also used to mask the tantalum erosion badges facing
the cathode. The effect of adding small quantities of

nitrogen to the xenon is plotted in Fig. 7, which shows
the tantalum baffle erosion rates at the baffle center as a

function of the percentage by mass of nitrogen added to the

It LN2 CRYO-LINER
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0 0.5 t 2 3

% NITROGEN BY MASS ADDED TO XENON

Fig. 7. Plot of the erosion rate of the cathode side of
the tantalumbaffle vs the % nitrogen by mass added
to the xenon.

xenon. As is the case for the molybdenum baffle and

screen grid erosion badges, the tantalum baffle erosion
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rates fall significantly when a nitrogen mass fraction of
0.5% is added to the xenon, and drop far less sharply
thereafter. At a mass fraction of 2.06%, there was at

most (including uncertainty) an erosion rate of 12.5

angstroms per hour. This represents a decrease in the
baffle center erosion rate of approxima_ly 50, compared to
the two baseline erosion rates. It is also a factor of 8
below the cathode side baffle erosion rate measured in the
2.6 kW J-series endurance tests 12, and implies an engine

life (limited by spalling of metal deposits on the keeper
isolator shadow shields) of at least 15,000 hours.

In Fig. 8 are plotted the erosion rates of the
tantalum baffles from runs #1 and #7; included in this

figure are baffle erosion data from a test conducted in
19899 in which a cathode having a smaller ta'ifice diameter

was used. Data pertinent for comparison are shown in
Table V.
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Table V. Erosion Test Data for Two Different Cathode

Orifices

TEST Cath Cath Disch Current Baffle

Flow Orifice Current Density Center
Dia Wear

Rate

(so:m) (cm) (A) (A/cm2) (A/hr)
1989 0% N2 2.4 0.07 11.0 2425 3400
1989 2% N2 2.4 0.07 11.0 2425 230
1990 0% N2 2.4 0.11 11.8 301 740
1990 2% N2 2.4 0.11 11.8 301 13

In both sets of experiments the cathode emission
currents (discharge current in these cases) were almost
identical; the discharge voltage in both was set to 32
volts. However, there are two significant differences in
the characteristics of the two sets of data. First, the
erosion rates for the test set which used the smaller

cathode orifice are greater than for the cathode with the
larger orifice. Second, the cathode-side baffle erosion
profiles are more peaked for the test set which used the
cathode with the smaller orifice.

One possible explanation for the observed
behavior is that there is a relationship between the

velocities of the ions in the cathode plume and the cathode
emission current density. The current density in the
cathode orifice of an ion engine hollow cathode is
typically hundreds to thousands of amperes/cm2. It is

possible that as cathode current density is increased, a
magnetic body force accelerates the elecmans and ions. 12
This phenomenon may have been responsible for

anomalously high ion energies in the cathode plume
observed in high current hollow cathode testing 9, as

evidenced by the fact that ion energies must have exceeded
anode potential to erode the anode faceplate. Until the ion
velocity and number density in the cathode plume have
been characterized, the mechanism responsible for cathode
side baffle erosion will not be understood. However, the

data presented in Fig. 8 suggest that very significant
reductions in baffle erosion can be obtained by increasing
cathode orifice diameter, as well as by adding small

quantifies of nitrogen to the xenon.

TANTALUM POLE PIECE EROSION MONITORS

The tantalum erosion badges placed on the inner

diameter of the cylindrical cathode pole piece walls were
observed to be affected by nitrogen addition in a way
similar to the tantalum baffle, but the magnitude of
erosion reduction is less pronounced {'Fig. 9). The erosion
rates of the tantalum pole piece badges are generally less
than the erosion rates at the center of the tantalum baffle,

probably due to the fact that the pole piece is eroded
predominandy by discharge chamber ions, and the baffle
is eroded predominantly by relatively energetic cathode

plume ions. When 2.06% nitrogen by mass was added to
the xenon, the average erosion rate of the pole piece badge,
including uncertainty, was too low to be measured.
Because of the reduced erosion rates demonstrated at the

pole piece, it may be desirable to fabricate cathode start
electrodes from tantalum and add small quantities of

nitrogen to the propellant in high power inert gas ion
engines.

ION ENGINE PERFORMANCE ANALYSIS

The addition of nitrogen to the propellant will

degrade thruster performance to some extent. The
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performance degradation results from theionization and

acceleration of nitrogen in place of xenon. The nitrogen
ion mass (either N +, or N2+ ) is considerably less than
that for xenon; consequently, the nitrogen ion velocities

will be much higher than the xenon ion velocity. This
ion exhaust velocity difference degrades thruster
performance in a way analogous to the degradation caused
by multiply charged xenon ions. The most energy
efficient way to produce a given thrust and specific
impulse is for all of the exhaust particles to have the same

exit velocity; any other velocity profile which results in
the same thrust and specific impulse will require more
power. This is because thruster power varies with the

square of the exit velocity, whereas the thrust varies only
linearly with velocity.
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Fig. 9. Plot of the erosion rates of the pole piece
badges as a function of the % by mass of nitrogen
added to the xenon.

A performance degradation analysis was
pedormed assuming that the fraction of the nitrogen which
was ionized and exmacted into the exhaust beam (nitrogen
propellant efficiency) was the same as the xenon
propellant efficiency. In practice, this fraction for nitrogen
will be much less than that for xenon since the nitrogen
ionization collision cross section is substantially smaller,
and the higher nitrogen atom thermal velocity makes the
escape of non-ionized nitrogen more likely. The results of
this analysis can therefore be characterized as conservative;
if an ion engine were operated with a xenon/nitrogen

mixture, somewhat better engine performance should be
expected than what is predicted from the degradation

analysi.s. The variation in thrust loss factors and

efficiency loss factors, assuming equal nitrogen and xenon
propellant efficiencies, are shown as a function of the

percentage of nitrogen addition (by mass) to the xenon in
Fig. 10.

As can be seen from the data presented in Fig.
10, there is at most only a small degradation in ion engine
performance when small quantities of nitrogen (0-2% by
mass) are added to the xenon propellant.
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Fig. 10. Thrust and efficiency loss factors as a function of
the percentage of nitrogen added to the xenon
propellanL

SURFACE ANALYSES

The mechanism res_nsibie for the reduced
discharge chamber component erosion rates may be the
formation of surface nitrides that have a lower erosion rate

than the pure metal. To verify this hypothesis, various
surfaceanalyses were performed on the erosion badgesto

look for evidence of surfacenitrides: Energy Dispersive X-
ray ana]yse_, X-ray Diffraction Analyses (XRD),
X-ray Photoelectron Spectroscopy (XPS), and Auger
electron bombardmentanalyses. There was no nitrogen
any form (either as nitride or mappednitrogen) identified
in the sampleSurfacesusingEDX; this maybe due to the
low sensitivity of this analysistechniqueto nitrogen. The
other three techniquesused(XPS, Auger, and XRD) did
indicatepossibleexistenceof surfacenitrogenor nitridcs.
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TABLE VI. Summary of XRD, XPS and Auger analyses.

TEST %N2

# ADDED

TO

XENON

SAMPLE XRD XPS

MATERIAL Analyses Analyses

AUGER

Analyses

8 0

4 0.51

5 0.51

2 1.19

Ta Baffle NP Ta TaL::O5. BaC03 F

TaBaffle NP Ta Ta205 BaC03

TaBaffle NP Ta Ta20s BaC03

TaBaffle Ta Ta Ta205 BaC03 Ca

TaN TaN Probable

1 0

2 1.19

8 0

5 0.51

7 2.10

Mo Baffle Mo Mo MoO3 Graphite

Mo Baffle NP Mo MoO3 Graphite

Mo Screen NP Mo MoO3 Graphite

Mo Baffle NP Mo MoO3 Graphite

Mo Screen Mo Mo MoO3 Graphite

NP = Not Performed

Nitrogen Possible

Nitrogen Probable
NP

Nitrogen

Not Performed

Not Performed

Nitrogen Possible

Nitrogen Probable

Nitrogen Very

Probable

Preliminary data from these last three analyses will be
discu_xL

Verification of surface nitrides in tantalum and

molybdenum is possible using XRD. Chemical
compounds and crystalline materials such as tantalum
nitride (TAN) are identified by characteristic diffraction
lines. XRD analyses of the erosion badges, when
compared to the characteristic diffraction lines published
by the American Society for Materials Testing (ASMT),
provide for determination of the surface composition and is
considered highly reliable.

Identification of elements and compounds using
XPS is accomplished by determining and analyzing the
signal amplitude of various electron states as a function of
binding energy. The binding energies for tantalum (21.7

eV for the Ta 4f7/2), tantalum oxide ( 26.2 eV for the
Ta205 and Ta 4f7/2), molybdenum (227.9 eV for Mo

3d5/2), and molybdenum oxide (232.4 eV for Mo 3d3/2
from MOO3) are well known. 13,14 Unfortunately, this is
not the case for the metal nitrites. 13,14 In principle,

however, the presence of a nitride is detectable by chemical
shifts of the Mo 3d or Ta 4f signals. Since the binding
energy is a measure of the potential at the atomic site of
interest, and nitrogen is less electronegative than oxygen,
the nitrides would be expected to have binding energies
intermediate between the metals and oxide. 13 The

presence of niu'ides, therefore, can not be measured directly

using XPS but may be inferred. The attenuation depth of
this technique is approximately 20 angstroms.

Verification of surface nitrides in tantalum and

molybdenum is possible using XRD. Chemical
compounds and crystalline materials such as tanUdum
nitride (TAN) are identified by characteristic diffraction
lines. XRD analyses of the erosion badges, when

compared to the characteristic diffraction lines published
by the American Society for Materials Testing (ASMT),
provides for determination of the surface composition
which is considered highly reliable.

Identification of elements and compounds using
XPS is accomplished by determining and analyzing the
signal amplitude of various electron states as a function of
binding energy. The binding energies for tantalum (21.7
eV for the Ta 4f7/2), tantalum oxide ( 26.2 eV for the
Ta205 and Ta 4f7/2), molybdenum (227.9 eV for Mo
3d5/'2), and molybdenum oxide (232.4 eV for Mo 3d3/2
from MOO3) are well known. 13,14 Unfortunately, this is
not the case for the metal nitrides. 13,14 In principle,

however, the presence of a niuide is detectable by chemical
shifts of the Mo 3d or Ta 4f signals. Since the binding
energy is a measure of the potential at the atomic site of
interest, and nitrogen is less eleclzonegative than oxygen,
the nitrides would be expected to have binding energies
intermediate between the metals and oxide. 13 The

presence of nitrites, therefore, can not be measured directly
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using XPS but may be inferred. The attenuation depth of
this technique is approximately 20 angstroms.

Direct detection of nitrogen on molybdenum or

tantalum using XPS is difficult due to overlap of the
nitrogen Is photoelectron signal with the Mo3p or Ta 4p
signals. Therefore an additional technique, Auger
spectroscopy, was used to verify the presence of nitrogen
in the surface.

Table VI summarizes the results of the XRD,
XPS and Auger analyses. The existence of metal nitrides
were either determined by comparing the diffraction
patterns of the erosion badges to the patterns published by
the ASTM, or they were inferred from shifts in the XPS
tantalum or molybdenum peaks. The existence of surface
nitrogen was verified using Auger specm3scopy.

TANTALUM BAFFLE: CATHODE SIDE

XRD analyses were performed on the
tantalum baffle used in test # 2. In addition to tantalum,

the results of the analyses show clearly the existence of
tantalum nilfide on the surface. This conclusion is based

upon verification of two of the three TaN diffraction
pattern lines published in the ASTM. No other materials,
such as tantalum oxides, were observed. For future
analyses, longer exposure times to the x-rays will be
required to observe compounds such as tantalum oxide
which were indicated in subsequent XPS analyses.

XPS analyses of these samples were complicated
by the existence of a native oxide and a thick surface layer
of pure barium carbonate. Barium and calcium are
elements included in the low surface work function oxide

which is impregnated into ion engine hollow cathode
inserts. The barium carbonate layer probably formed when
the ion engine was exposed to atmosphere. Great care was

taken during these experiments to insure that no oxygen
contaminated the ion engine during erosion testing, so it
is likely that the tantalum oxide also formed on exposure
of the ion engine to atmosphere. Since the attenuation
depth of the XPS analyses for these tests was
approximately 20 angstroms, and since the nitrogen 4s
signal overlaps with the tantalum 4p signal, any nitride
layers underneath the oxide and barium carbonate layers
would be difficult to detect.

There is no evidence of surface nitrides from

analyses of the XPS data for tests 8,4,and 5. However,
analysis of the XPS data from test #2, where a high
concenWation (1.19%) of nitrogen was added to the xenon,
indicates there is strong evidence 16 for the existence of a
surface nitride. This inference is based on the fact that the

low binding energy doublet shifted 1.7 eV relative to the
binding energy expected for tantalum.15

The Auger analyses indicate that only in test #2
was there clear and conclusive evidence of surface nitrogen
on the cathode side of the tantalum baffle. Evidence of

surface nitrogen in the other samples are inconclusive due

to a weak nitrogen signal and/or peak overlap. The
evidence for surface nitrogen was strongest for cases with
the highest concentrations of nitrogen added to the xenon.

MOLYBDENUM BAFFLE: DISCHARGE SIDE
MOLYBDENUM SCREEN GRID BADGE

There is no evidence of surface nitrides from

analyses of the XRD and XPS data for these samples. In
all samples studied there was a very thin oxide layer, and
evidence suggesting the presence of graphite. The graphite
was probably ion-sputter-deposited onto the molybdenum
from graphite squares placed near the molybdenum erosion
lx_lges.

The Auger spectroscopy, however, has the same
characteristics as the tantalum Auger analyses: the higher
the concentration of nitrogen added to the xenon, the
stronger the evidence for surface nitrogen. Again, the

XPS and Auger data are not definitive due to weak signal
and peak overlap. For the cases where nitrogen was
added to the xenon, there may be a surface nitride layer
which is so thin that the XPS signal is weak relative to
the metal and oxide signals.

XPS AND AUGER AFTER SURFACE CLEANING

To enhance the probability of obtaining clear
evidence for surface nitrides and surface nitrogen, the
samples listed in Table VII were ion etched for 60-75
seconds to remove surface contaminants and oxides, and

subsequently analyzed using XPS and Auger spectroscopy.
After ion etching, the molybdenum surface was essentially
free of all traces of graphite and oxide; however, the
barium carbonate signal was not completely removed from
the )fl_S analyses of the tantalum erosion badge.

Table VII. XPS and Auger spec_oscopy after surface
cleaning via ion bombardmenL

Test _N2 SamDle XPSAnalyses AugerAnalyses
* Added Material

To

Xenon

8 0 TaBaffle TaTar5 BaCoF NitrogenPossible

4 0.51 TaBaffle TaTa_05BaCO3F Ca NitrogenProbable
5 051 11oBaffle M0MR NitrogenProbable
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Again, there is no direct evidence of surface

nitrides from any of the XPS analyses. Analyses of the
Auger spectrometry indicates, however, a correlation

between addition of nitrogen to the xenon and the
existence of surface nitrogen. The nitrogen peak from the
molybdenum sample from test #5 was most evident after
ion surface cleaning was performed. The fact that the
nitrogen signal increased, while the oxygen and carbon
signals (from MoO3 and graphite) decreased, indicates that
the nitrogen is not part of a surface contaminant.18
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Significant reductions in the erosion rams of ion

engine discharge chamber components were observed when
small quantities (0.5-2.0% by mass) of nitrogen were
added to the xenon propellant. The effect is most

pronounced for the tantalum baffle facing the cathode, and
tantalum erosion badges placed along the ID of the pole
piece. A maximum reduction in the erosion rates of

tantalum at those locations of a factor of approximmely 50
was achieved. Reductions in cathode side baffle erosion

werealsoachievedby reducingthediameterofthecathode

orifice.Molybdenum baffleand screengriderosionrates

werereducedby afactorofapproximately8-20by adding
nitrogentothexenon.

Calculations showed that degradation of ion
engine performance of up to only a few percent should be
expected at these nitrogen mass fractions. XRD, XPS and
Auger analyses indicate that a thick nitride layer forms on
the side of the tantalum baffle facing the cathode when
nitrogen (1.19% by mass) is added to the xenon. The
evidence for surface nitrides in the molybdenum erosion
badges and other tantalum badges are less conclusive,

perhaps because of surface oxide and contaminant layers
which interfere with the nitride signal, or peak overlap. It
is also possible that the nitride layer is too thin in some
cases to be detected using XRI_, XPS and EDX analyses.
Auger analyses generally supports a correlation bctwcen
the percentage by mass of nitrogen added to the xenon and
the amount of nitrogen detected in the surfaces of the
erosion badges.

The dataindicatethatsignificantand useful

reductionsindischargechambercomponenterosioncanbc

achievedusinga nitrogenmass fractionof only0.5

percent.This techniquemay reducecathodestart-up

electrodeandscreengriderosionratesinhigh-powerinert

gas thrusmrs. The addition of nitrogen to the propellant in
these thrusters may also reduce screen grid erosion from
energetic ions in the cathode plume. Additional studies
should be conducted to identify possible adverse effects of
nitrogen addition on ion engine operation.
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Abstract

An overview of the benefits which may be derived
through the use of electric propulsion in support of the
Space Exploration Initiative is presented. Lunar cargo,
Mars cargo and piloted Mars vehicles using electric
propulsion are considered. The high performance of
electric propulsion systems is shown to offer substantial
benefits for these applications, including: substantially
reduced initial masses in low earth orbit, reduced round-
trip times for piloted Mars vehicles, availability of large
amounts of electrical power in-route and at the destination,
less sensitivity to launch dates and windows, reusability,
and growth potdntlal for human exploration of the solar
system. Hybrid chemical/NEP and NTR/NEP vehicles are
discussed for their potential to reduce piloted round trip
time to Mars even further. A brief technology assessment
of the major electric propulsion system components is also
presented.

Introduction

"When people travel to other planets, what will they
have under the hood?" This question, as posed by Ben
Bova, x is currently the subject of considerable debate as it
pertains to the Space Exploration Initiative and human
exploration of Mars. The leading propulsion system
candidates for piloted and cargo missions to Mars include:
chemical O2/I-I2 with aerobraking, nuclear thermal
propulsion, and solar electric and nuclear electric
propulsion. This paper highlights the potential benefits
which may be realized through the use of solar and
nuclear electric propulsion systems in support of the Space
Exploration Initiative.

Electric propulsion has been considered for space
flight since R. H. Goddard first realized, over eighty years
ago, the potential benefits of the very high velocities
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Technology Group; Member AIAA.

which can be imparted to charged panicles by devices at
relatively low temperatures. 2 Electric thrusters produce
exhaust velocities much higher than those possible with
chemical engines by decoupling the propellant from the
energy source used to accelerate the propellant. While the
exhaust velocity is determined by the amount of energy
added per unit mass of propellant, the thrust level is
determined by the available electric power, and thus
electric propulsion systems are referred to as "power
limited." The total mass of the required power supply,
power conversion and power processing equipment,
thrusters, and propellant, for a given power level, always
results in a very low thrust-to-mass ratio (i.e. acceleration)
for electric propulsion systems. For this reason, electric
propulsion systems are also commonly referred to as _low
thrust systems."

In a strong gravity field (such as within the Earth's
sphere of influence), low thrust, high specific impulse
propulsion can result in an order of magnitude savings in
propellant mass relative to chemical systems, albeit
generally at the expense of increas_ trip times. Cargo
missions, which are not trip time constrained, are ideal
candidates for electric propulsion. In the relatively weak
gravity field of heliocentric space, electric propulsion
vehicles can be significantly faster than chemical rockets
since greater energy can be imparted to the vehicle for the
same propellant mass.

Electric propulsion encompasses a wide variety of
thruster types which cover an impressive range of power
levels (ten's of watts to ten's of megawatts) and specific
impulse capabilities (a few hundred seconds to greater
than ten thousand seconds). This range of capabilities has
potential applications to a wide variety of missions as
described by Beattie and Penn, 3 and has stimulated
numerous research and development programs, as well as
a substantial body of flight experience. (There were 77
flight tests of different electric thrusters, conducted by four

Copyright © 1990 American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.
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different countries, between 1962 and 1985. 4 These tests,
however, were all performed at power levels substantially
less than those required to support the Space Exploration
Initiative).

For the Space Exploration Initiative, with projecw.zl
requirements to move 10's to 100's of metric K_S around
Earth-Moon space and to and from Mars, elecuic
propulsion systems processing 100's of kilowatts to 10's
of megawa_, with specific impulses of greater than 5000
seconds, will be required. This range of power levels and
specific impulses narrows the field of candidate flu-uster
concepts for these missions. The two leading candidates
are the electrostatic (ion) thruster and the
magnetoplasmadynamic (MPD) thruster. Both of these
thruster types require development to achieve the
performance levels necessary to support the Space
Exploration Initiative. However, projected system
performance levels for both thrusters are similar enough
that selection between thruster concepts at this time is
premature. Furthermore, benefits for lunar cargo, Mars
cargo and piloted Mars missions are essentially
independent of the thruster choice based on their
respective projected performance levels.

Electric Propulsion Systems

All electric propulsion systems have essentially the
same generic system architecture, regardless of the details
of the particular thruster used. Electric propulsion systems
require a power source (typically either photovoltaic solar
arrays, or a nuclear reactor), power conversion equipment
to generate electric power, power conditioning equipment
to transform the raw electric power from the power
conversion system into the currents and voltages required
by the thruster, a propellant storage and distribution
system, thrusters, thermal management systems, and
structure. These systems were identified as the principal
components of high power electric propulsion systems as
early as 1955, 2 and are nearly summarized in Fig. 1 which
was taken from a 1967 study on multimegawatt nuclear
electric propulsion for manned interplanetary missions)

The initial mass of an electric propulsion vehicle may
be described by the following expression,

M_ - M, +Mvow+t_v_o+(l*fr)M v . (1)

where M, is the initial vehicle mass, ML is the payload
mass, Meow is the mass of the power source and power
conversion equipment, Meso is the mass of the propulsion
system (which consists primarily of the thrusters and
power processing equipmen0, Mr is the propellant mass,
and fr is the tankage fraction. This equation may be
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Figure 1 System diagram for nuclear electric
propulsion.

rewritten as,

M, = M, +_-po.,+ =p_ +(1+/_)_,.

where,
%os,= _wer _st_ma_lfic mass,(kg/kVO
%Jo = Propulsionsystemspecificmass,

(k_VO.

(2)

In this equation, P is the total electrical power supplied to
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the propulsion system. In addition, the power system
specific mass includes both the power source and the
power conversion masses, and the propulsion system
specific mass includes the thrusters and power
conditioning masses.

Equation (2) indicates that for a given payload mass,
the initial vehicle mass increases with the propulsion
system power, P, as well as with the power and
propulsion system specific masses. The trip time,
however, decreases with increasing system power,
resulting in a tradeoff between Ixip time and initial vehicle
mass. The key performance parameters for electric
propulsion systems are: specific impulse, power level,
power system specific mass, propulsion system specific
mass, and thruster efficiency. The low thrust nature of
electric propulsion requires that the propulsion system
operate for many thousands of hours to produce the
desired spacecraft velocity change. This places a premium
on thruster technologies which have long useful life times.

Mission Benefits

The discussion of mission benefits enabled through
the use of high power electric propulsion systems is
divided into three mission categories: lunar cargo vehicles,
Mars cargo vehicles, and piloted Mars missions. The
general benefits provided by low thrust, high specific
impulse propulsion for lunar cargo vehicles and piloted
Mars missions were eloquently summarized by Eamst
Stuhlinger _ in 1959, and are as true today as they were 31
years ago.

Lunar Cargo Vehicles

The establishment and maintenance of a lunar base

will require the ability to continuously deliver large
masses of material to lunar orbit to supply the base with
food, chemical propellants, building material, and
equipment (referred to as Operation Moon-rift in Ref. 6).
Lunar cargo vehicles using electric propulsion systems
have been proposed and analyzed in numerous studies, _x°
and the conclusions of these studies are generally always
the same. Electric propulsion systems with power levels
ranging from a few hundred kilowatts to a few megawatts
can deliver substantial quantifies of material to the Moon
with significantly reduced initial mass in low earth orbit
(IMEO) relative to chemical systems.

For example, a fleet of four 300 kW solar electric
propulsion vehicles with an IMEO of 50,000 kg each was
shown, in Ref. 7, to be capable of delivering 20 MT of
cargo every 100 days to the Moon. In Ref. 8, the IMEO
of three different electric propulsion vehicles and a
chemical 02/system were compared assuming delivery
of a payload mass of 35,000 kg. This comparison is

reproduced here as Fig. 2. The electric propulsion
systems in this figure are based on thrusters with an Isp of
5000 s, and are shown to reduce the propellant mass
required by approximately 65,000 kg per flight, relative to
the 475 s I_, chemical system. In this study, the 1 MW
propulsion systems were assumed to use a nuclear power
system with a specific mass of 10 kg/kW together with a
propulsion system specific mass of 1 kg/kW. The 300 kW
ion propulsion system was assumed to use a solar array
with a 7 kg/kW EOL specific mass coupled to an ion
propulsion system with a specific mass of 3.1 kg/kW.
Solar array degradation, as a result of spiraling through the
Van Allen radiation belts was accounted for in an
approximate manner in this analysis.
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Figure 2 Propulsion system mass comparison for iu_:
cargo vehicles.

The sensitivity of the round trip time (for a reusable
lunar ferry vehicle) to the power system specific mass was
investigated by Palaszewski, 9 and is shown in Fig. 3
assuming the use of a 5000 s ammonia MPD thruster
system. Clearly, the power system specific mass has a
major effect on the vehicle performance. This is
characteristic of electric propulsion vehicles and stresses
the high desirability for low specific mass power systems.
Very recent studies have confirmed the potential for large
reductions in IMEO through the use of low thrust, high
specific impulse propulsion for lunar cargo vehicles
(assuming a power system specific mass of 10 kg/kW). H

The large mass savings, and the corresponding
reductions in launch costs, however, are not the only
benefits of using electric propulsion for lunar cargo
vehicles. Palaszewski 9 discusses the benefits of having
megawatt power levels available in low lunar orbit for
lunar science, including the use of high power radar and
other high power instrumentation to select the best initial
lunar base location. A high power cargo vehicle could
also be used for communications once it is in lunar orbit
enabling very high data rates to be relayed to surface
rovers that may be very far from the base. 9 Finally, a
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power system specific mass.

lunar cargo vehicle using nuclear electric propulsion with
a power level of a few megawatts may serve as a
technology demonstrator for higher power Mars cargo or
piloted Mars missions, n

Mars Cargo Vehicles

The human exploration of Mars will require the
transportation of 100's to 1000's of metric tons of material
and equipment to Mars. For example, the study of Mars
cargo vehicles in Ref. 12 assumed that a payload mass of
400 MT was to be delivered from a 500 km low Earth
orbit to a 6000 km Mars orbit in support of the Phobos
gateway mission concept. Performance assessments, in
terms of payload mass delivered, IMEO, and one-way and
round-trip times have been made for electric cargo
vehicles in numerous studies. _z_7 These studies cover a
wide range of assumptions concerning the required
payload mass to be delivered, system power levels, and
power system and electric propulsion system performance
levels, but generally find qualitatively the same mass
savings benefits.

The wade study performed in ReL 14 demonstrated
that specific impulses of greater than approximately 4000
s are required for NEP cargo vehicles to have a substantial
reduction in IMEO relative to 480 s I_ chemical systems
with aerobraking. At specific impulses of 5,000 to 10,000
s, however, the savings in IMEO are enormous. The
potential mass savings with NEP are shown in Fig. 4
(reproduced from Ref. 14) as a function of the power

system specific mass. The assumptions used to generate
this figure are:

1. A 180,000 kg payload is delivered to a 1,000 km
Mars orbit.

2. The chemical propulsion system I,¢ is 480 s with
aerobraking at Mars.

3. The cargo vehicle does not return to the Earth.
4. The NEP system power level is 4 MW at 10

k w.
The curve in Fig. 4 indicates a mass savings of
approximately 300 MT for NEP specific impulses of
greater than 5000 s.
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The effect of power system technology level (as
reflected by the value of the power system specific mass)
on the !MEO was calculated by LeRC. n The results of
these calculations are shown in Fig. 5, assuming a payload
mass of 400 MT is delivered to Mars aerosynchronous
orbiL The IMEO for two chemical propulsion options are
also given in this figure for comparison. The relatively
long trip times for the NEP systems, shown in this figure,
result from the large ratio of payload mass (400 MT) to
power level (5 MW) used in the analyses. The use of
higher power levels can reduce this Irip time
substantially, t2 Never the less, Fig. 5 shows that mass
savings of many 100's of metric tons can be achieved
using an NEP cargo vehicle relative to an advanced
chemica[/aerobraked system. Significantly, the NEP
system is shown to provide these mass savings even over
a factor of 3 variation in the power system specific mass
(from 10 to 30 kg/kW).
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Figure 5

As was the case for lunar cargo vehicles, the use of
electric propulsion for Mars cargo vehicles has advantages
other than simply the significant reduction in initial mass
in low Earth orbit. Ch_eTamong these is the availab_ty

Assuming a total power and propulsion system
specific mass of 2 kg/kW, Stuhlinger and Kingm showed
that a 40 MW. nuclear electric propulsion system, with a
specific impulse of 14,000 s, could propel a 360 MT
piloted spacecraft to Mars and back in 572 days, including
a 29 day stayatMars,and wouldrequireapproximately
148 MT of propellant.The valueof 2 kg/kW forthe
power and propulsionsystemspecificmass usedinthis
studyisoptimisticbutnotunreasonablehavingbeenmade
28 yearsago.A recentstudyTM projectsultimatevaluesfor
thisparameterofbetween3.0and 2.1kg/kW forpower
levelsrangingfrom 10 MW to I00MW.

Additional recent studies,n_ inwhichpowerlevels
of 10'sof Megawattsareassumed,haveconfirmedthe
general benefits iden_ed in the earlier studies of using
electric propulsion for piloted Mars missions; namely,
reduced initial mass in low Earth orbit, and reduced round
trip times. Furthermore, these studies show that electric
propulsion can provide these benefits with power system
specific masses on the order of 10 kg/kW. A comparison
of initial mass in low Earth orbit for piloted Mars vehicles
versus trip time is ._iven in Fig. 6 for several different
propulsion systems." This figure indicates that only the
speculative, gas core reactor (_CR) system can offer

of megawatts of electric power at Mars. Potential uses of performance superior to the multimegawatt NEP system.
this power are described by Coomes et. al) n including the Both the NEP and solar electric propulsion (SEP) systems
possibility of beamed power _smission to the surface of show significant mass =and tripilme reductions relatiVe to
Mars. A 10 MW nucl_ electric power system placed in
aerosynchronous orbit above the landing site, together with
a microwave power transmission system, could make 5 to
7 MW of electric power available at the Mars surface to
support manned :and _manned mission activities,
acting-to Ref. 18. Nuclear elc6_cb, mgo vehicles
could also be used to support in situ propellant production
activities at Mars by delivering the necessary hardware _9
and, presumably, by supplying the power required to
operate this equipment.

Piloted Mars Missions

The major propulsion system driver for a piloted
mission to Mars is to move, what is of necessity, a
massive vehicle to Mars and back as quickly as possible.
Faster transfers to Mars require the space vehicle to follow
higher energy trajectories. The limited performance of
chemical systems for these missions has stimulated studies
of a wide variety of higher performance alternatives.
Nuclear electric propulsion was seriously proposed for

2 62.0.21piloted Mars missions as earlyas1955. Studies2"s' of
the late 1950% and 1960's showed that nuclear electric

propulsion systems could reduce the initial vehicle mass
in low earth orbit, as well as the trip time for piloted
missions to Mars, relative to advanced chemical systems
(which were typically assumed to be OJI-I 2 with an I_, of
450 s).

the reference chemical :sy_tern. _unhermore, the
system is shown to have comparable trip times to the NTR
system, but with lower initial mass.
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Figure 6 Comparison of propulsion options for piloted
Mars vehicles.

Electric propulsion vehicles for piloted Mars missions
tend to be physically large. For NEP systems the vehicle
size is determined by the separation distance between the
reactor and the crew modules, to minimize crew radiation
doses, and by the radiator for the power conversion
system. Multimegawatt solar electric vehicles are
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dominated by the enormous solar array. Sketches of two
NEP, piloted Mars vehicle concepts are shown in Fig. 7;
one from 1962_ and the other from 1990.23 Both vehicles

carry a Mars excursion vehicle, provide artificial gravity
for the crew, and are of a comparable physical size.

Hybrid Vehicles

For NEP systems, a significant fraction of the mission
time is spent in geocentric space spiraling away from the
Earth. The desire to minimize trip times for piloted
missions has prompted the study of chemical/NEP and
NTR/NEP hybrid vehicles, zu_;2e These hybrid vehicles
would use the high thrust system, either chemical or NTR,
for earth escape, and then use the NEP system for the rest
of the trip to Mars, as well as the return trip. The
desirability of hybrid systems was described by Stuhlinger 2
in the following passage.

"The complementary nature of nuclear and
electric propulsion systems becomes very obvious
when combinedchemical-nuclear-electric systems
are considered. Preliminary studies show that
with a Saturn V as booster, a nuclear engine of
the NERVA class as second stage, and an elecUic
system with 4 to 5 MW electric power as third
stage, a minimum manned round trip to Mars
could be achieved."

Alternatively, hybrid chemical/NEP or NTR/NEP systems
can be used to reduce performance requirements on both
systems, 1. while retaining most of the performance
benefits of all NEP systems operating at higher power
levels.

nuclear power systems _ hunched by the United States as
of 1985. Thus, there would seem to be little doubt as to
the feasibility of nuclear electric propulsion, the major
technological challenge is in scaling these systems up to
the power and performance levels required to support the
Space Exploration Initiative. The primary emphasis of the
technology assessment section of this paper will be on the
thrusters, however, it is important to recognize that a large
effort which will be required to develop a suitable power
supply, power conversion, thermal management system.

Power Source and Power Conversion

Both photovoltaic solar arrays and nuclear reactors
have been proposed for multimegawatt electric propulsion
systems. Multlmegawatt solar arrays require enormous
areas, typically on the order of 1 football field per 2
MW.zz The feasibility and practicality of such large arrays
is an open question. For power levels up to a megawatt,
the SP-100 nuclear reactor, or a derived version of this
technology, may be appropriate) _ Above the one
megawatt level, there are several candidate reactor
concepts. These include evolved SP-i00 or NERVA 30
derivative technologies, and other closed cycle systems.

Methods of converting the thermal power of the
reactor to electricity include thermodynamic cycles with
rotating machinery (Braymn, Sterling, Rankine),
thermoelectric conversion, thermionic conversion, and
other direct conversion systems. Selection of a power
conversion system depends on many mission and system
requirements, including the form of power (AC or DC,
voltage level, etc.) selected for power distribution, as well
as thruster interface requirements.

The use of a high-performance electric propulsion
system eases constraints on crew accommodations, due to
relaxed mass restrictions, and provides ample power for
environmental control and life support systems (ECLSS).
Power requirements for ECLSS are projected to be on the
order of 25 kWe for a piloted Mars vehicleY This is a

Finally, the thermal management system, which
constitutes a major portion of the NEP system, must be
considered. In addition to passive radiators, other
candidate technologies include heat pipes and more
speculative concepts (such as liquid droplet radiators).

power level which could easily be provided on a vehicle Thrusters
which has multimegawatts of electrical power capability.
The performance of piloted vehicles using electric
propulsion is also less sensitive to launch dates and
windows," and the vehicles are potentially fully reusable.

Finally, NEP systems have significant growth
potential for human exploration of the solar system.
Nuclear electric propulsion systems processing on the
order of 100 MW at specific impulses of 20,000 s have
been proposed with this ultimate goal in mind. "m

Two of the leading candidates for high power lunar
and Mars electric propulsion systems are ion and MPD
thrusters. In addition, numerous other electric thruster
concepts, presently at less advanced stages of development
than the ion and MPD thrusters, have been proposed. 12
These include quasi-steady pulsed and steady-state
devices, utilizing a variety of electromagnetic phenomena,
and operating on a wide spectrum of solid, liquid and
gaseous propellants.

Technology Assessment

There have been 48 electric thruster systems a and 22

Ion: Ion thrusters convert electrical power to thrust
power by electrostatically accelerating positively charged
ions. The ions are generated in the discharge chamber of
the thruster by electron bombardment of the propellant gas
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(which is usually a rare gas such as argon, krypton or
xenon; although mercury and cesium have also been used).
The chamber in which the ions are created is maintained
at a high positive potential, typically on the order of 1,000
volts. The ions and elections in the discharge chamber
form a plasma which assumes a potential approximately
equal to the high positive potential applied to the thruster.
The high positive plasma potential causes the positive ions
to be pushed out of the thruster at very high velocities.

Electrons left behind by the ions which were pushed
from the thruster are collected and injected into the ion
beam to prevent the spacecraft from becoming negatively
charged. A negatively biased grid positioned at the
downstream end of the thruster screens the positive high
voltage discharge chamber from these electrons while
simultaneously permitting the beam ions to pass through
and leave the thruster. A second grid is typically
positioned a fraction of a millimeter upslream of the
negative grid to focus the ions through the apertures of the
negative grid. This combination of closely spaced grids is
commonly referred to as the ion accelerator system. The
thrust density for an ion engine is limited by space charge
effects in the accelerator system. In general, higher thrust
densities can be achieved by reducing the grid separation.
A cutaway view showing the major components of an ion
thruster is given in Fig. 8.

The electrostatic acceleration process which produces
the high velocity ions is nearly 100 % efficient (actual
efficiencies are typically greater than 99.5 %).
Consequently, ion thrusters are the most efficient electric
propulsion devices, and are potentially capable of
processing very large power levels, at very high specific
impulses while maintaining relatively low engine
component temperatures. Loss mechanisms associated
with ionizing the neutral propellant gas serve to lower the
overall engine effÉciency to 60-85%.

Multimegawatt electric propulsion systems require
individual ion thrusters which can process input powers of
several 100 to 1,000 kW at specific impulses of 5,000 s to
greater than 10,000 s. A 1.5 m diameter mercury ion
thruster has been operated at a maximum input power of
130 kW with an overall thruster efficiency of 70 % and a
specific impulse of 8150 s. 3' In other work, a mercury ion
thruster was operated at specific impulses greater than
20,000 s? 2

Environmental concerns with mercury, and the limited
availability and high cost of xenon and krypton make
argon the most likely propellant for high power ion
thrusters. A 50 cm diameter thruster has been operated at

power levels up to 20 kW at a specific impulse of 4600 s
on xenon? _ If this same thruster were operated on argon,

higher input powers and higher specific impulse levels
could be achieved. The major technology issue for high

power ion propulsion systems is associated with scaling
ion engine power levels up one or two orders of
magnitude from the present 10's of kW range. Scaling to
these power levels will most likely require new engine and
accelerator system configurations.

MPD: The magnetoplasmadynamic (MPD) thruster
produces thrust through the interaction of a
multikiloampere arc discharge and a magnetic field, as
suggested in Fig. 9. This interaction results in a JxB
force which expels a relatively dense, fully ionized,
plasma from the thruster at high velocities. In "self-field"
MPD thrusters, the magnetic field is generated solely by
the action of the very large discharge current. "Applied-
field" thrusters augment this self-induced field with an
externally applied magnetic field. Magnetic flux densities
of 0.1 to 1 tesla are typical of both self-field and applied
field thrusters.

,oioo,,oo

Figure 9 MPD thruster illuswation.
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Since a neutral plasma is accelerated from the MPD
thruster, the thrust density is not limited by space-charge
effects as it is in the ion thruster. Thrust densities two
orders of magnitude higher than that of the ion thruster
may be poss_le with the MPD thruster at the same
specific impulse. Scaling relations developed for the MPD
thruster indicate that the most efficient thruster
performance will be obtained at megawatt input power
levels -- ideal for multimegwatt eleclric propulsion
systems.

Steady-state MPD thrusters have been successfully
operated at the 100 kW power level at NASA Lewis
Research Center:' With argon propellant at this power
level, the LeRC thruster was 21% efficient and produced
a specific impulse of 1100 s. Improved performance is
expected at megawatt power levels. Efficiencies greater
than 50 % and specific impulses greater than 5000 s have
been reported for pulsed MPD thrusters operating at
multimegawatt input power levels with hydrogen 3s_ and
ammonia _ propellants. Successful steady-state MPD
thruster operation at power levels up to 600 kW, with low
electrode erosion, has been demonstrated at the University
of Stuttgart, FRG, _ and steady-state operation up to the
megawatt level in the Soviet Union has been reported) 9
A more detailed review of MPD thruster technology may
be found in Sovie and Mantenieks. 40 The major
technological challenge for MPD propulsion is to
simultaneously demonstrate high performance (i.e. greater
than 50 % efficiency at specific impulses of 5000 s or
higher) with life times of several thousand hours under
steady-state operation at megawatts of input power.

Summary

Electric propulsion systems offer significant benefits
for the Space Exploration Initiative provided the
component technologies required by these systems can be
successfully scaled up to megawatt power levels. Lunar
cargo vehicles can provide mass savings of tens to
hundreds of metric tons per mission by using electric
propulsion systems operating at power levels in the range
300 to 1,000 kW. Mars cargo vehicles will require power
levels of 1 to 10 MW to deliver payload masses on the
order of 400 MT, but result in reductions in IMEO of
several hundred metric tons per mission. Piloted Mars
missions using eleclric propuI_on systems With tens of
megawatts of power show significant reductions in IMEO
and trip time. Minimum round-trip times to Mars may be
13ossible through the use of hybrid chemical/NEP or
NTR/NEP systems. Nuclear electric propulsion systems
also provide growth potential for expanded human
exploration of the solar system.

Finally, it is best to keep in mind that no one
propulsion system is ideal for all applications and that
human settlement of Mars will no doubt require a variety
of advanced propulsion systems. The role of electric
propulsion may best be summarized in the following
quotation:

"The electric propulsion system will come into
life on its own right, not as an all-out competitor,
but as another powerful tool for the exploration
of space." (Stuhlinger 1959)
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SIMULATED ION THRUSTER OPERATION
WITHOUT BEAM EXTRACTION
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Abstract

The development of high power (100's of kilowatts)
ion engines may be greatly facilitated through the use of
a technique which enables optimization of the discharge
chamber to be performed without beam exwaction. Ion
thruster operation without beam extraction results in an
experimentally determined decrease in the accelerator
system transparency to ions from approximately 0.8 down
to 0.22 for the standard J-Series thruster ion optics. This
decreased ion transparency translates into a decreased
propellant flow rate requirement for operation without
beam extraction, enabling testing to be performed in
smaller vacuum chambers with lower pumping speeds.
Performance curves simulated without beam extraction are
shown to agree well with actual performance curves
obtained with beam extraction. Screen grid temperatures,
however, are shown to be significantly higher without
beam extraction due to the decrease in the accelerator

system transparency to ions.
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Active grid area, (m2)
Electronic charge, (A)
Ion current to accelerator grid, (A)
Ion current leaving the thruster, (A)
Discharge current, (A)
Total grid plane ion current, (J,+J,,+J,), (A)
Keeper electrode current, (A)
Ion current to screen grid, (A)
Total propellant flow rate, (equivalent amperes)
Ion mass, (kg)
Ion number density, (m"3)
Neutral atom number density, (m"3)
Maxwellian electron ionization rate factor, (m3/s)
Electron temprature, (eV)
Bohm velocity, (m/s)
Discharge voltage, (V)
Keeper electrode voltage, (V)
Primary electron velocity, (m/s)
Total voltage, (V)
Neutral atom thermal velocity, (m/s)
Ion production volume, (m 3)
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Introduction

High power ion propulsion systems can substantially
benefit the Space Exploration Initiative by greatly
reducing the mass of material required to be lifted to low
Earth orbit) 4 For ion propulsion to fulfill this promise,
however, the successful development of ion engines
which can process input powers on the order of 100's to
1000's of kilowatts is required. The major technological
challenge in this endeavor is in the development of large
area, high current density, accelerator systems. However,
the development of a light-weight, long-life, discharge
chamber which can efficiently supply a uniform flux of
ions to this accelerator system over a large area is an
essential, and by no means trivial, task.

The development and life testing of large diameter,
high power, rare gas, ion engines can be expensive due to
the very high pumping speeds (106 to 10_ liters/second)
that are required to maintain sufficiently low background
pressures during beam extraction. Vacuum facilities
capable of achieving pumping speeds of this magnitude
are expensive to construct and maintain. This paper
describes an investigation into the feasibility of a
technique to simulate the ion beam extraction operating
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conditions of the discharge chamber without actually
extracting a beam. Successful development of such a
technique may permit the initial development and
optimization of large area, high power, ion engine
discharge chambers to be performed in vacuum facilities
with more modest pumping capabilities (on the order of
105 liters/second).

The idea of discharge chamber optimization without
beam extraction is not new, and several such
investigations are described in the literature. 5"7 Those
studies in which the discharge chamber was ultimately
tested with beam extraction, however, have typically
found that the discharge chamber performs significantly
poorer under actual beam extraction tests than was
projected based on the tests performed without beam
extraction. It is befieved that this discrepancy results
primarily from a reduction in neutral atom density in the
discharge chamber for operation with beam extraction
relative to the tests performed without beam extraction at
the same propellant flow rate. It has been shown' that the
discharge chamber performance is strongly dependent on
the internal neutral atom density. In fact, the values of all
major discharge chamber plasma parameters, including the
discharge loss, may be shown to be functions of the
neutral atom density and the discharge chamber
geometry. 8 The discharge chamber performance is also a
function of the ion density distribution.

This suggests that to simulate beam extraction, the
most important similarity conditions are to simultaneously
match both the neutral atom density and the ion density
to the respective values which would be obtained with
beam extraction. In this paper the necessary conditions to
produce simulated beam extraction are developed
analytically. Experimental discharge chamber
performance data obtained with and without beam
extraction are used to test the validity of the similarity
conditions.

Theory

Duringnormal thruster operation with beam
extraction, ions created in the discharge chamber flow
essentially collisionlessly toward the discharge chamber
boundaries. Some fraction of this ion flux is directed
towards the accelerator system. One of the functions of
the magnetic field applied to the discharge chamber is to
maximize this fraction, thereby increasing the overall
engine efficiency by reducing the flux of ions to surfaces
other than the accelerator system. Those ions which don't
reach the accelerator system recombine with electrons on
the walls of the discharge chamber and must be re-ionized
before they can be accelerated. Of the ions which reach
the accelerator system only a fraction is extracted into the
beam; the remaining ions strike the screen grid webbing
and recombine with electrons on the grid surface.

The effective accelerator system transparency to ions

is def'med as the fraction of the ion flux to the accelerator

system which is extracted into the exhaust beam.
Focussing effects from the applied grid voltages can result
in effective ion transparencies greater than the physical
open area fraction of the screen grid. The physical open
area fraction of the J-Series screen grid is 67 %, and
effective ion transparencies of 80 % have been measured.

With beam extraction, the neutral propellant density
in the discharge chamber is typically much greater than
the ion density. Yet in an efficient ion engine, greater
than 90 % of the propellant leaves the thruster in the form
of ions. This is possible because the ions flow toward the
accelerator system with a velocity which depends on the
electron temperature (i.e. the Bohm velocity), and the
electron temperature is generally more than 500 times the
neutral atom temperature which governs the escape of
neutral atoms from the thruster. In addition, the effective
transparency of the accelerator system to ions (67 to 80
percen0 is much greater than the effective transparency of
the accelerator system to neutral atoms. The neutral atom
transparency is governed by the accelerator grid hole size
and grid thickness, and is approximately 20 % for the J-
Series optics.

Without beam extraction the situation is different.
Removal of the high voltages from the grids dramatically
reduces the accelerator system transparency to ions. In
this case, a large fraction of the ions reaching the
accelerator system are focused onto the screen grid and
accelerator grid webbings rather than being transmitted
through the grid apertures. Ions striking the grids
recombine with electrons at the grid surface and leave the
surface as neutral atoms. Some fraction of these neutral
atoms re-enter the discharge chamber and the others leave
the thruster entirely. Since the accelerator system
transparency to ions decreases significantly without beam
extraction, the fraction of propellant which leaves the
discharge chamber as neutral atoms increases. If the
propellant flow rate into the discharge chamber is
unchanged when the high voltages are removed, then the
neutral atom density in the discharge chamber will
increase to satisfy continuity. In this case the neutral
particle flux through the grids must increase to account
for the decrease in ion flux from the engine.

To simulate the beam extraction operating conditions
of the discharge chamber without beam extraction, the
propellant flow rate into the discharge chamber must be
reduced. In addition, it is necessary to match the average
ion density in the discharge chamber with and without
beam extraction. These ideas are developed more
concretely in the following simple analysis. The
propellant flow rate into the discharge chamber (in units
of equivalent amperes) is given in Eq. (1) for operation
with beam extraction.

1
r_ ,, -.n,.a,,_oV, e ,, 0,6 nv_ativl, e (1)

4 v.,-
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The first term on the right-hand-side of Eq. (1) represents
the flow rate of neutral atoms leaving the discharge
chamber through the accelerator system. The second term
represents the flow rate of ions exwacted into the exhaust
beam. Without beam extraction the propellant flow rate
is given by,

(2)

Writing Eq. (2) in this form recognizes that the electron
temperature may not necessarily be the same with and
without beam extraction, resulting in a different value of
the Bohm velocity. The similarity criteria to match the
beam extraction conditions without beam extraction are
that the neutral atom and ion densities must be the same
in both cases, i.e.,

f_o "_ no • 1_I = nl "

and the electron temperatures must be the same,

Using these conditions, Eq. (2) can be written,

= InoAd_ovoe + 0.6n.xA_v_e

Equation (1) may be rewritten as,

I = n_ + 1]"a '

where the discharge chamber propellant efficiency with
beam extraction is given by,

_-,d- 0"6nIA_ivbe
(7)

Finally, using Eqs. (6) and (7) in Eq. (5) results in the
following relation,

This equation indicates that the propellant flow rate
without beam extraction, required to simulate discharge
chamber operation with beam extraction, at a given
propellant efficiency and total flow rate, depends only on
the ratio of accelerator system transparencies to ions
without and with beam extraction, assuming the similarity
conditions, Eqs. (3) and (4), have been met. As the

accelerator system ion transparency ratio decreases, so
does the required propellant flow rate without beam
extraction, according to Eq. (8). If the analysis is
extended to include the effect of multiply charged ions,
then the form of Eq. (7) is unchanged; however, the
discharge chamber propellant efficiency is the value
corrected for multiply charged ions.

Apparatus and Procedure

Experiments to test the theory were performed using
a modified J-Series _, 30 cm diameter, divergent-field
thruster. Modifications to the standard J-Series thruster
included removal of the isolator and vaporizer heaters,
replacement of the mercury high voltage propellant
isolators with isolators designed for improved
performance with inert gas propellants TM, replacement of
the perforated ground screen with a solid ground screen,
and replacement of all of the teflon coated, kapton wire

(3) with ceramic bead insulated wire. In addition, the
standard J-Series thruster main cathode was replaced with
a 6.35 rn_ diameter hollow cathode fabricated from a
thin walled, molybdenum tube with a _2=%=thoriated
tungsten orifice plate electron beamwelded to one end.

(4) A J-Series thruster style porous tungsten insert
impregnated with low work function material was used as
the emitter inside the molybdenum cathode barrel. The
cathode orifice diameter was 1.27 ram, and a Swagelok
fitting was used to provide a gas tight seal at the

(5) upstream end of the cathode. This fitting also served to
mount the cathode to a stainless steel flange which was
then bolted to the cathode mounting flange in the J-Series
pole piece assembly. A tantalum-sheathed, tantalum
swaged heater wire with a 0.51 mm diameter center
conductor was used for the cathode tip heater. A 25.4

(6) mm diameter molybdenum baffle was used in place of the
J-Series baffle. All tests were performed using the
standard J-Series accelerator system.

For some tests the accelerator system was electrically
isolated from the thruster body. This was done to enable
the ion current to the screen grid to be measured. The
accelerator system was electrically isolated by inserting
12.7 mm long ceramic insulators between the thruster
body flange and the accelerator system mounting flange.
This modification had the side effect of lengthening the

discharge chamber by 12.7 ram, which required remaking
the ground screen. In addition, a cylindrical section of
0.254 mm thick, non-magnetic stainless steel was spot-
welded to the anode pole piece to extend this structure

(8) 12.7 mm toward the screen grid. This was done to
minimize plasma leakage around the anode pole piece
when the accelerator system was dtsplaced downstream
by the ceramic insulators.

A simplified power supply circuit diagram for beam
extraction operation with the screen grid electrically
isolated from the thruster body is given in Fig. IA. The
neutralizer common lead was allowed to float relative to
facility ground. The screen grid bias supply is used to
bias the screen grid up to 30 volts negative of cathode
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Figure 1A Circuit diagram for operation with beam
extraction.
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Figure 1B Circuit diagram for operation without
beam extraction.

potential to prevent electrons from reaching the grid
surface. The current through this power supply, under
these conditions, represents the current of ions which
strike the screen grid. The beam current, on the other
hand, is the current of ions which pass through the
accelerator system. The sum of the beam current and the
ion current reaching the screen grid represents the total
flux of ions toward the accelerator system. The ratio of
the beam current to this total ion current is the effective
transparency of the accelerator system to ions. (The ion
current which impinges on the accelerator grid is typically
1% or less of the beam current, and is neglected.) With
this technique, the effective transparency of the

accelerator system to ions was measured at beam currents
up to 2.5 A at a total voltage of 1430 V.

For operation without beam extraction, the simplified
circuit diagram shown in Fig. 1B is used. The neutralizer
common lead is grounded to the vacuum tank walls, and
there is no neutralizer cathode. The grid bias supply is
used to bias both the screen and accelerator grids up to 30
volts negative of cathode potential, which as before,
enables the measurement of the ion current to the grids.
The engine bias supply shown in Fig. 1B is used to raise
the discharge chamber cathode potential up to 30 volts
above facility ground. This is done to prevent electrons
in the discharge chamber plasma from leaving the engine,
thus enabling the ion current leaving the engine to be
measured. In a manner analogous to operation with the
high voltage on, the ratio of the ion current leaving the
engine to the sum of this current and the ion current
striking the grids represents the effective transparency of
the grid system to ions. The presence or absence of the
high voltage applied to the grids will be shown to have a
f'wst order effect on the effective transparency of the
accelerator system to ions.

When comparing data obtained from experiments
performed with the circuit diagrams in Fig. 1, care must
be taken to correctly compute equivalent discharge
powers for operation with and without beam extraction.
For the circuit in Fig. 1A, the electrons left behind by
ions extracted into the beam do not contribute to the
discharge current since the screen supply is connected to
the positive side of the discharge power supply. Ions
which strike the screen grid, however, draw electrons
through the discharge supply and, therefore, contribute to
the discharge current. Without beam extraction, the ion
current striking the grid webbings increases substantially.
The end result is that, to compute the discharge power in
a physically consistant manner, the beam current obtained
with beam extraction must be added to the discharge
current, and this sum, multiplied by the discharge voltage,
will result in the appropriate discharge power. This
added complexity could be eliminated by connecting the
high voltage screen power supply to the negative side of
the discharge supply for operation with beam extraction
(as is often done).

The experiments were conducted by first operating
the thruster with beam extraction. The ion current to the
screen was measured as a function of the negative bias
applied to the screen grid. A typical variation of
measured ion current versus bias voltage is given m Fig.
2 for two different beam current levels. These data
indicate that the ion current saturates at between 10 and
15 volts negative of cathode potential. To guarantee that
measurements were being taken well away from the
"knee" of these curves, a constant negative bias of 20
volts was used. Similar tests performed without beam
extraction showed the same, well-defined ion current
saturation behavior. After completion of the data
collection with beam extraction, the high voltage and
neutralizer cathode were turned off in preparation for tests
performed without beam extraction. It was necessary to
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turn the neutralizer off for operation without beam
extraction to prevent electron backstreaming to the ion
source when the engine bias supply was used to bias the
discharge chamber positive of facility ground. Finally,
the flow rate through the main cathode was held constant
for operation without beam extraction.

corresponding screen grid thermocouples. Narrow strips
of tantalum foil were spot-welded to the upstream side of
the screen grid to shield the accelerator grid thermocouple
wires from the beam ions when operating with beam
extraction. The 36-gauge thermocouples wires were
attached to the grids by tightly tying the thermocouple
leads around the grid webbing as described in Ref. 11.
The thermocouple output voltages were read using
components of a data acquisition system which were
floated at the appropriate high voltage level (1100 volts
for the screen grid and -300 volts for the accelerator grid)
and optically coupled to ground. Grid temperature
measurements were collected over a range of discharge
powers with and without beam extraction.

Results and Discussion

The effect of the high voltage on the accelerator
system transparency to ions is illustrated in Fig. 3. With
beam extraction, typically 80 % of the ion flux towards
the accelerator system is focused through the grid
apertures into the exhaust beam, approximately 20 %
strikes the screen grid, and less than 1% hits the

accelerator grid. Without beam exwaction, the ions are
not focused through the grid apertures, but rather are
directed toward the grid webbing. In this case, typically
65 % of the ion flux impinges on the screen grid, 30 %
reaches the accelerator grid, and the remaining 5 % leaves
the thruster.

2.0

Laboratory power supplies were used for all of the

power supplies except the discharge, screen and r-. 1.5
accelerator supplies. These power supplies were
comprised of a parallel combination of components from
two FMPPU's as described in Ref. 10. All tests were

z
performed using xenon gas for the propellant, w
Commercial flow controllers and thermal mass flow _ ] .0
meters were used to measure and control the xenon D
propellant flow rates. The flow meters were calibrated o
using a primary standard, volumetric displacement 7-
technique. Repeated checks of the calibrations were O 0.5
performed using a secondary standard volumetric
displacement system. Engine operating data were
recorded with a computer controlled data acquisition
system. For all of the tests describe herein, however, the
engine itself was operated under manual control. The ion 0.0
currents to the screen and accelerator grids, and the ion
current leaving the engine without the high voltage on,
were measured using digital multimeters.

One series of tests was performed to determine the
effect of high voltage operation on the accelerator system
temperatures. For these tests, six 36-gauge, Type-J

thermocouples were attached to the screen and accelerator
grids, three on each grid. The thermocouples were
positioned at radial locations of 0, 4.5, and 9.0 cm from
the centerline of the grids. The accelerator grid
thermocouples were positioned diametrically opposite the

BEAM
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Figure3 Ion current distributions with and
without beam extraction.

The data in Fig. 3 were obtained at a discharge
current and voltage of 10.0 A and 32 volts, and a total
flow rate of 33.3 sccm. Careful inspection of this figure
indicates that the total ion flux toward the accelerator
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40 , ,system with beam extraction is greater than without beam
extraction even though the discharge chamber was
operating at the same discharge power and total propellant
flow rate. This effect is befieved to result from

suppression of the Maxwellian elec_on temperature
caused by the high neutral atom density produced by
operation without beam extraction. The variation of the
ion current to the grid plane with total flow rate is given
in Fig. 4 for operation without beam extraction at a
constant discharge current of 10.0 A. The maximum ion
current to the grid plane occurs over a range of total flow
rates from approximately 11 to 14 seem, and is
approximately equal to the ion current measured to the
grid plane with beam extraction as indicated by the solid
circle in this figure. This suggests that, in this case, the
proper flow rate without beam exwaction is in the range
11 to 14 seem.
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The discharge current/voltage characteristic obtained
with beam extraction at a total flow rate of 33.3 sccm is

compared to that without beam exwaction at a flow rate
of 10.9 sccm in Fig. 5 (the cathode flow rate was
maintainedat the same valuewithand withoutbeam

extraction). Operation without beam extraction at flow
rates either significantly higher or lower than about 11
sccm resulted in substantially different current voltage
characteristics than that shown in Fig. 5. The ratio of the
total ion current to the grid plane (which is the sum of the
ion currents to the screen grid, accelerator grid, and
leaving the thruster) without beam extraction to that with
beam extraction is given in Fig. 6 as a function of
discharge power. These data indicate that the ion flux to
the grid plane is the same with and without beam
extraction, provided the total flow rate into the thruster
without beam extraction is reduced to the correct level.
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Figure 5 Comparison of discharge chamber
current/voltage characteristics with and
without beam extraction.
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Neutral Atom Density

The similarity conditions used to derive Eq. (8) were
that the neutral atom density, ion density, and electron
temperature without beam extraction must be identical to
their respective values with beam extraction. Comparison
of calculated neutral atom densities with and without
beam extraction is given in Fig. 7. The average neutral
density in the discharge chamber with beam extraction
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was calculated using the following expression,

4_ (I-_.d) (9)
n° - A oVoe

Without beam extraction, the average neutral atom density
was calculate from,

4 (1 -fl.a) (10)
= A oVoe "

where the propellant efficiency in this case was
determined in two different ways corresponding to two
different assumptions regarding the behavior of the neutral
atoms formed by ion recombination at the accelerator
grid. The ions which strike the accelerator grid without
beam extraction pick-up electrons at the grid surface and
become neutral atoms. These neutral atoms leave the grid
surface and either re-enter the discharge chamber or leave
the thruster entirely. If it is assumed that all of the ions
strikingthe acceleratorgrid re-enterthe discharge
chamber as neutralatoms,thenthedischargechamber

propellantefficiencywithoutbeam extractionisgivenby,

fl.e" . 01)
m

whichcorrespondstothecurvelabeled"I00%" inFig.7.
On theotherhand,ifitisassumedthatnoneoftheions

strikingthe acceleratorgrid re-enterthe discharge
chamber,thenthepropellantefficiencyisgivenby,

Yb+J', 02)
_ud _ //]

correspondingtothe"0 %" curveinFig.7.

The averageneutralatom densitywithoutbeam
extractioncalculatedusingEqs.(10)-(12)iscomparedin

Fig.7 to the neutraldensitywith beam extraction
calculatedfromEq. (9).Itisseenthattheneutralatom
densitieswith beam cxwactionfallbetween the two

limitingcams assumed tocalculatetheneutraldensity
without beam extraction. This indicates that some
fractionoftheionswhichstriketheacceleratorgridreturn

tothedischargechamberas neutralatoms,butthatthis
fractionislessthanone.Reasonablygoodagreementcan
be obtainedfortheneutralatom densityvariationwith

dischargepower withoutbeam extraction,by assuming
thatonly45 % oftheionsstrikingtheacceleratorgridre-
enterthedischargechamberasneutralatoms(asindicated
inFig.8);theother55 % leavethethrusterasneutrals.
In making thesecalculations,an activegridareaof
6.38x10" m2, an accelerator system transparency to
neutral atoms of 0.2, and a neutral xenon atom velocity of
311 m/s were used.
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Figure 7 Comparison of calculated neutral atom
densities with and without beam
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to the assumed behavior of the ions

suiking the accelerator grid.

x1018
! , I I

g

WITH BF.AM EXTRACTIONC_

z 0 ' ' ' '
2OO 3OO 4OO 5OO 6OO 700

DISCHARGE POWER, (W)

Figure 8 Comparision of calculated neutral atom
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striking the accelerator grid without
beam extraction return to the discharge
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Simulated Performance Curve

If 55 % of the ions which strike the accelerator grid,
without beam extraction, immediately leave the discharge
chamber as neutral atoms, then this effectively increases
the accelerator system transparency to ions for the
following reason. Ions which slrike the accelerator grid
when operating without beam extraction, leave the
discharge chamber at the Bohm velocity. Those ions
which become neutralized at the accelerator grid surface
and immediately leave the thruster have essentially left
the discharge chamber at the Bohm velocity, not at the
neutral atom thermal velocity. Thus, even though they
technically did not pass through the accelerator system as
ions, for the purposes of computing the average neutral
density in the discharge chamber they must be treated as
if they did. That is, the effective accelerator system
transparency to ions without beam extraction, which is
required as an input to Eq. (8), must be computed as

o.ssS.
J. ÷J, ÷Jb 03)

The results using Eq. (13) to calculate the effective ion
transparency without beam extraction are given in Fig. 9
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as a function of discharge power, at a total flow rate of
10.9 sccm. For comparison, the effective ion transparency
with beam extraction is also given in this figure over the
same discharge power range.

Discharge chamber performance data obtained without
beam extraction may now be used to determine the
discharge chamber performance curve with beam

extraction. To do this it is first assumed that the beam
current with beam extraction may be calculated from the
total ion current to the grid plane measured without beam
extraction, times the ion transparency with beam
extraction, i.e.,

(Jb) ,1._1,_._ = ¢td=, • (14)

Using Eq. (14), Eq. (8) may be rearranged to yield an
expression which enables a simulated propellant
efficiency to be calculated based on the propellant flow
rate and the total ion flux to the accelerator system
measured without beam extraction,

('qua) °/.nm.Za eed =
(15)

where the total flow rate without beam extraction is in
units of equivalent amperes. To complete the
performance curve, the simulated beam ion energy cost is
calculated from

(era) #_uImeed =
%÷sk%

(16)

Equations (15) and (16) allow discharge chamber
performance data measured without beam extraction to be
transformed into a performance curve which simulates the
performance of the discharge chamber under beam
extraction conditions. To use these equations, a good
estimation of the accelerator system transparency to ions
with beam extraction is required. Comparison of a real
performance curve taken with beam extraction is
compared to a simulated performance curve generated
using Eqs. (15) and (16) with data obtained without beam
extraction in Fig. 10. The performance curve with beam
extraction was generated by fixing the main and cathode
flow rates while adjusting the discharge current to change
the discharge power. Thus, both the discharge voltage
and the beam current vary from point to point on this
performance curve. Without beam extraction, the cathode
flow rate was kept at the same value as for with beam
extraction, and the main flow rate was reduced until the
total flow rate was 10.9 sccm. These flows were then
held constant while the discharge current was varied. The
agreement between the real and simulated performance
curves is seen to be excellent. In generating the
simulated performance curve the grid transparency data
from Fig. 9 were used in Eqs. (15) and (16).

Electron Temperature

In the derivation of Eq. (8), the average electron
temperature in the discharge chamber was assumed to be
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Figure 10

! I I
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PROPELLANT EFFICIENCY, 'Oud

Comparison of simulated performance
curve determined without beam

extraction to the actual performance
curve obtained with beam extraction.

the same with and without beam extraction. Reference 8
gives an algebraic expression for the average electron
temperature expressed in terms of the Maxwellian electron
ionization rate factor, and is reproduced here as Eq. (17).

o.=

v V_l.V " _ . (17)
e _ _(i-%n) -i

o,zso,;VoV  ##h)

Substituting appropriate parameter values into this
equation, and using Eq. (9) together with the definition of
the Bohm velocity, results in the following expression:

1.08 x I0 -t_

2.08x10 -zv n° 1 (18)

where the total inelastic collision cross section data

required in Eq. (17) was obtained from Ref. 12.

The Maxwellian electron rate factor is a function of
the electron temperature and the species being ionized.
Equation (18) may be used to determine the average
electron temperature using the data from Ref. 13 to relate
the rate factor to the electron temperature for xenon.
Inspection of this equation, however, reveals that if the
neutral atom density is held constant, and the grid
transparency to ions decreases, then the average electron

temperature must decrease. This indicates that it is
impossible to simultaneously match the neutral atom
density and the electron temperature with and without
beam extraction due to the change in the accelerator
system transparency to ions. This is illustrated in Fig. 11,
where the calculated electron temperatures with and
without beam extraction are given over a range of
discharge powers.
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Figurell Comparison of calculated average
electron temperatures with and without
beam extraction.

The electron temperatures in Fig. 11 were calculated
based on the neutral atom density variation with discharge
power given in Fig. 8, and the effective accelerator
system transparency data in Fig. 9. To calculate the
electron temperature, the Maxwellian ionization rate
factor versus electron temperature data from Ref. 13 was
curve fit over the range 0 to 10 eV, resulting in the
following expression,

O_ = 10_

where, x = Ao÷AITs+AzTZ,÷A3T3,+A47_o

A o = -19.655 , A z = 4.8122x10 -x

At -- 2.6363 , A 3 = 4.1843x10 -z

A 4 ffi -l.3863xlO-'t

(19)

Equations (18) and (19) were then solved simultaneously
for the electron temperature, using the appropriate values
of the neutral atom density and the grid ion transparency,
to produce the results shown in Fig. 11. These
calculations should be used only to indicate that the
electron temperature is different with and without beam
extraction. The true average electron temperatures will
probably be less than those indicated as Ref. 14 showed
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that F_,q.(17) over-estimates the electron temperature at 500
high discharge powers.

Ion Density r-.
c_ 480
o

The total ion current to the grid plane depends on the __
average ion density and the electron temperature, i.e.,

Jg --o. e eAFa,_.
(20)

As shown above, the electron temperature without beam
extraction must be less than it is with beam extraction at
the same neutral atom density. The data in Fig. 6,
however, indicate that the total ion current to the grid
plane is the same with and without beam extraction. This
can only be possible if the average ion density is higher
without beam extraction than it is with beam extraction,
so that the product of the ion density and the square root
of the electron temperature is constant.

Revised Similarity Conditions

The similarity conditions assumed in the derivation of
Eq. (8), namely Eqs. (3) and (4), have been shown to be
impossible to satisfy simultaneously. However, if these
similarity conditions are replaced with the following
conditions,

/_'o= no. /$_t_f_o = n*Vr_." (21)

then E,q. (8) may be re-derived with no changes in the
final form of the equation. The validity of the new
similarity conditions depends on the experimentally
determined observation that the ion current to the grid
plane is the same with and without beam extraction,
provided the neutral density is the same.

Screen Grid Temperature

Measurements of screen grid temperatures were made
with and without beam extraction as a function of
discharge power. The thermocouples attached to the
accelerator grid, however, did not withstand the high
voltage environment long enough to obtain useful data.
The radial temperature profile across the screen grid is
given in Fig. 12 for three different operating conditions:
with beam exwaction at a propellant flow rate of 33.3
seem, without beam extraction at 29.1 seem, and without
beam extraction at 10.9 seem. These data were all taken
at a discharge power of 450 W, and with the screen grid
at cathode potential.

Surprisingly enough, the maximum screen grid
temperature does not occur on the centerline of the grids
with beam extraction. Without beam extraction the
maximum does occur on the centerline. This effect
appears to be real, as the data were repeated several
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times. In addition, the screen grid temperatures are
significantly lower with beam extraction than without.
The lower temperatures are most likely a result of the
increased screen grid transparency with beam extraction.
This increased transparency reduces the energy deposited
on the grid by ions from the plasma. The difference in
radial temperature profiles with and without beam
extraction are substantial enough that it may necessary to
account for this difference when modeling the
thermal]mechanical behavior of ion accelerator systems.

Conclusions

A simple model was developed which describes the
reduction in propellant flow rate required to simulate
beam extraction operating conditions in a ion thruster
discharge chamber operating without beam extraction.
According to this model, to simulate beam extraction, it
is necessary to match the discharge chamber average
neutral atom density with and without beam extraction.
In addition, the product of the average ion density and the
square root of the average electron temperature must be
constant. These conditions may be met by merely
reducing the total flow rate to the appropriate value to
account for the reduced accelerator system transparency
to ions without beam extraction.

For the J-Series ion thruster accelerator system, it was

experimentally determined that the transparency to ions
without beam extraction was 0.22, and that with beam
extraction this transparency was 0.80 (for operation at a
total voltage of 1430 V, and approximately a 2.0 A
beam). The value ion lransparency without beam
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extraction (0.22) was calculated by t'u-st determining that
55 % of the ions recombining on the accelerator grid do
not return to the discharge chamber. This determination
was made to match calculated neutral atom densities with
and without beam extraction. Simulated performance
curves obtained from operation without beam extraction
agree very well with actual performance curves.

Screen grid temperatures measured with and without
beam extraction indicate significantly higher temperatures
and a different radial temperature profde without beam
extraction. The higher temperatures are believed to result
from the added thermal loading due to the increased ion
flux to the grid surfaces without beam extraction.
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AN OPTICAL TECHNIQUE TO MEASURE ION ENGINE GRID DISTORTION DUE TO
DIFFERENTIAL THERMAL EXPANSION

VJ. Trava-AirolcU*, CJE.Garner**, TJ. Pivirot_**, and I. R. Brophy**

Jet Propul_on Laboratory

California Institute of Technology
Pasactena,Ca

Abstract Introduction

An opticaltechniquetomeasuresmalldifferential

griddisplacementsdue to thermalexpansionof an ion
thrusteracceleratorsystemhasbeendeveloped.Emphasis

was placedon an opticaltechniquebecauseof thewide

varietyofapplications,simpleoperationand easyset-up.
Thereisa greatdealofinterestinmakingmeasurements

ofsmalldisplacementswiththepurposeofapplyingthem

toroboticposition-sensinginmachinevisionsys_s and

alsotomeasuretheshapeand sizeofmachinedpartswith

a noncontactingsensor.For thiswork,severaltechniques

were investigated,includingintetfemmetrictechniques,

however,a new, recentlydevelopedopticaltechnique

basedon typeIImicroscopemeasurementtechniques,was

selected.Experimentswereperformedtodemonstratethe

applicabilityof thistechniquefor measuring small

displacementsof ionenginescreenand acceleratorgrids
ata distanceof severalmeters.Severaldifferentoptical

components were testedfor theirabilityto discern

displacementsof a 30-cm diameter,two-grid ion

acceleratorsystemwhichwas separatedfrom thethruster

body and mounted outsideof the vacuum system.
Differentialthermalexpansionof thegridswas induced

through the use of a 500 Wheat lamp placed adjacent to
the screen grid. An analysis of these experimental results

and a suggestion for furore experiments to be performed
with the grids inside the vacuum chamber are also

presented.

* Visiting scientist from Instimto de Pesquisas

Espaciais, Sao Jose dos Campos, also supported by
Conselho de Dcsenvolvimento Cienthqco e Tecnologico -

Brazil.
** Member Technical Staff, Electric Propulsion and

Plasma Technology Group. Member AIAA.

The necessity of increasing ion engine diameter
in order to increase the engine thrust may aggravate the

problem of thermally-induced grid gap changes, degrading
accelerator system performance for large diameter
thrusters. Measurements of thermally induced grid

displacements will facilitate development of

accurate modeling of the grid thermal/mechanical
behavior. These modeLs may then beused to develop

accel_tor sys_n dcsign.s_°w[fich=avoid undesirable
thermal/mechanical behavior. Finite element models of
30 and 50 cm diameter accelerator systems have been

performed i'_, but there is a distinct lack of experimentally
measured grid displacement data taken during actual beam
extraction tests with which the validity of these models

can beassessed.The mostsuccessfulgriddisplacements
measurementsperformedtodatearethosedescribedin

ReL 3,wherethestructuraland thermalresponseofa 30

cm diameter ion thruster accelerator system were studied

using an inlzusive technique without _am cxwaction.
Obtaining grid displacement information during thruster
operalion with beam exwaction may best be performed

using optical techniques.

The severe test environment in which the grid

displacement measurements must be made, including a
brightplasma, roughgridsurfacesand smallviewfactor

to the inner grid, and the long distances over which the
measurement must be made, plaee_ difficult requirements

on the optical technique which must make the measure-
ments. With these requirements in mind, several optical

techniques were studied, including optical inter-
feromen-y, 4-_differential confocal optical range,* confocal

optical microscope techniques (type I and type II'),7 as
well as an alternative optical technique described in Ref.

7. These differing techniques were evaluated on both
technical and cost considerations, and the availability of

Copyright © 1990 American Institute of Aeronautics and
Astronauncs, Inc. All rights reserved. 15 6



optical components. As a result of these evaluations, the
confocal scanning optical microscope type II (CSOlvO was
selected as the most appropriate technique for a feasibility
demonstration.

The type II confocal optical microscope has been
the subject of intense recent smdMs for making film-
thickness and profile measurements using its shallow
depth of field properties. In addition, this technique has
been suggested for robotic applications for determining

the quality of machined surfaces, _ as well as for making
small distance and displacement measurements using short
focal lengths with sample position scanning, as described
in Refs. 5 and 6. Distances of up to 15 cm between the

lens plane and the sample have been used.

In this work, the same concept of the type II

confocal scanning optical microscope technique is used.
For measuring small displacements where there is a
substantially greater distance between the lens plane and
the sample, instead of scanning the sample, some of the
optical components are moved while the sample is kept
fixed. In this case, where long distances on the order of
a meter or more are required and with the necessity of

moving the optical components, alignment is critical.

Basic Theoretical Concept

The principal objective of this technique is to get
information about the geometrical shape of a light spot

focused by a precision lens. A mirror is placed in the
beam waist region and its position is scanned through the

beam waist depth. The light reflected from the mirror
passes through a pinhole, which serves as a spatial filter,
and is detected by coherent detector, as indicated Fig. 1.

SEAM 8_AGG 9(A u

EXPANO[M CELL SPLITTEM OI$.JECTIV_ I, ImROR

Figure 1. Experimental set-up for the CSOM technique.

In thisfigure, the beam expander is used to produce a
parallel laser beam, the beam splitter is used to separate
the incident and reflected light, and the Bragg Cell
Chopper is used to provide AC signal detection. The
intensity of light reflected from the minor depends on its

position.

The amplitude of reflected light that reaches the
detector has been calculated theoretically by K. Liang, eL
al.,o for an acoustic microscope, and a nonparaxial form
of the vector field theory has been derived in Ref. 7.
These theories are briefly summarizedbelow.

Assuming a lens with a pupil function P_),

where is the angle between a ray from the lens plane to
the focal point and the lens axis. The transversal electric
field associated with a plane wave focu.sed by the lens
depends on the distance (z) on the axis, and is given by:

f
E(Z): | (! _' COSe)$iNe ExPtiKZ COSe).(e)d8

Je (COS_) vz
(1)

where K is the wave number, and sin _) is the numerical

aperture of the lens. In this equation, the term (cos_)) _a

appears in the denominator as it does in the theory of
RichardandWolP' so that power isconservedat theexit

planeof thelens.The amplitudeand thephaseof the

planewave componentsoftheelectricfieldatanangleis
exactly the integrand of the Eq. (l). When the light is
reflected from the mirror, with reflectivity R_, the beam

waist image is refocused on the pinhole, and the

correspondent field is given by:.

v,,,,_' (_• cosO_s,_.O{xp(ziKzcos(hp_O)e(O),_e

"'" .Ie -- (COSO)W

(2)

The same simplificationused inRef.9 isvalidinthis

case,where a largedistancebetweenthe lensand the

sampleisused. An approximateform can be givenfor

Eq.(2),sothattheobservableintensityasoutlinedinRef.

10 can be givenby:

IV(Z) Iz I SIN KZ(1- COS_I} Iz
= I(Ztl-COSOo) " t

(3)
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where it was assumed d_ P_) = 1 for (_<(_, the light is

uniformly distributed on the lens surface, Ka >> 1 (where
"a" isthe lensranD),and (1 + cos0)l(cos0)°J = 2.

Equation(3)providesthe shapeof a symmetricbeam
waistwithverygood accuracy,The depthof thebeam

waistatthe3-Db pointisgivenby:)

0.4a3

¢'_z_3_B:I-COsOo (4)

This eq-_don shows that it is possible to apply this
technique using a large lens, and there is no restriction
limiting the distance between the lens and the sample, ff
all the necessary conditions are satisfied. However, in
practice, the lens spherical aberrations can increase with
the lens diameter, and consequently limit the numerical

aperun_ of the lens. In addition, becanse of the large
lens-sample separation distance, the alignment of the
reflected light through the pinhole becomes more critical.
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Experiments

An initial set of experiments was performed

using the test set-up indic_ in Fig. 2. It should be
notedmat ............insteadof scanningthemirrorthroughthelens

focalplaneposition,as inFig.I,the setof lensand

objective-pinhole were moved producing a scanning of the

lens focal plane on the fixed mirror position. These
experimenLs were designed to test different optical

Figure 3. Comparison of the optical response of several
kinds of lenses to theoretical predictions.

the widest. This suggests d_ the beam waist at the
focal plane does not have the desired shape; probably as
a result of accentuated aberrations. However, for both the

camera lens and the achromatic precision lens the

response of the beam waist shape is close to the theory.
The distance between the lens and the reflective mirror,

particular configuration. Several kinds of lenses were
tested in order to get the best response (i.e. best

agreement with the theoretical predictions). Comparison
between data obtained using a common plano<onvex lens
(less aberration), a lens for a high pow_ laser, a camera

lens, an achromatic precision lens, and theory is shown in

the Fig. 3. It is observed that response for the common
lens is more asymmetric than the odNn"lenses and is also

BEAM BeAM LENS HI MIRROR
IRIS EXPANDER SPLITTER

--'_

ASE. Ii [

components, as well as to test the feasibility of this as well as the laser beam _"diameterat the lens, was the
same for each lens. A lens-mirror separation distance of
302 mm and a laser beam diameter on the lens of 38 mm

were used. This provided a lens numerical aperture of
0.05% ineachcase.

Usingtheseresults,thenew experimentalset-up

shown in Fig. 4 was implemented in order m optically
measurethe thermally inducedgrid displacementsof a set
of 30 cm diameter, 900-series grids. The basic

differencesbetw-eentheset-upinFig. 2 and thatinFig.4 are the two additionalmirrorsinsertedafl_rthe lens,

I I Pt,'_ _ tu'cRo- and that the reflective minor was replaced by the screen

I I 'ME'ER and accelerator grids of the ion thruster acceleramrsystem. The two additional mirrors enabledthefocused
LENS(_...J laserbeam to be preciselypositionedon thegrids. In

__ ["-'-']osc,LoscoPz order m get a sufficiently reflective surface, a very small.

OETECT..G.Lo_o_? _ thinmirrorofsiliconw_attached tothesurfaceofeach

Figure2. Experimentalset-uptotestmovement ofthe gridusinga ceramicglue.Sificonmirrorswereselected

opticalcomponents, basedon theirtoleranceofelevatedtemperaturesandhigh
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reflectivity at these temperatures. The ceramic glue was
used to minimize thermal expansion effects.
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Figure 4. Experimental set-up tomeasureion engine grid
displacemenL
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Figure 5. Gap between the screen and acceleTator grids

at room temperature.

For these experiments, a precision achromatic
lens was used, and the results obtained with the grids at

room temperature are shown in the Fig. 5. Three
different locations were selected at which to measure the

screen-m-acceleratorgridseparation; onein the centerand
two others distanced about 80 mm from the center.
Measurementsof the Ip'id-m-grid separation using this
technique agreed well with measurements made using
calibratedfeeler gauges.

The error bars shown in the Fig. 5 indicate limits
on the resolution of this technique, resulting from
vibrations of the experimental scbup, as well as
uncertaintiesintroducedby the data re.ducdonprocedure.
In addition, the resolution is limited by the poor shape of

beam waist image on the pinhole. The resolution
could be improved by fast position scanning of the set of
the lens and pinhole-objective, and by using a differential
technique to find the maximum reflected light intensity.
In addition, it was noted that the beam alignment is
critical. To measure the gap between two grids, the laser
beam spot was moved from the accelerator grid to the
screen grid surface using only mirror (1). But. because
the two silicon mirrors glued to the grid surfaces were not
perfectly parallel, it was necessary to readjust the
alignment using both mirrors (1) and (2).

An additional set of experiments was performed
to determine if this technique can be used to discern

thermally induced grid movements and the resulting
change in the grid-to-grid separation. For these tests the
experimental set-up given in Fig. 4 was used with the

addidon thata heatgun and a 500 W heatlamp were

alternately used to heat the grids. The use of the heat

lamp resulted in more azimuthally symmetric heating of
the grids than could be obtained with the heat gun and
was therefore used for the grid deflection tests.
Asymmetric gridheatingresultsinmisalignment of the

reflected laser light resulting from deflections of grids
surfaces, as shown in Fig. 6. The misalignment was
smaller for lamp heating,

• ,_CC ELgla t OA gill
• $C¢11(;* &too O'_fAT gUW

lafCl[L(Ra, tOll ¢RI0 _SOOW t_laP• lClPF.t. ,SmO
o

T

4 °

J,

o

,00 I00 $OO

:IIIP(I*_'_ ! I_1

Figure 6. Screenand accelerator grid deflection as a

function of gridtemperature.
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and the use of the lamp did not affect the ability to find
the maximum intensity of the rcflccted laser light. The
radial tempetmure Izroffle on grid surfaces using the high

power lamp heating is shown in Fig. 7. The lamp was
positioned on the cent_lin¢ of the accelerator system
facingthe screengrid. The smallsizeof the lamp
resulted in a radiaJ temperaturegradient on bothgrids.In
addition,theacceleratorgridtemperaturewassignificandy

lowerthanthethatof thescreengrid.
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Displacementmeasurementsof both grids,and the

correspondinggrid-to-gridgaps were measur_ as
functionsof the grid temperatures.The measured

displacementsof acceleratorand screengridsfor the

three selected grid locations, and the corresponding grid
gaps are given in Fig. 8. Spatiallynon-uniform

displacements versus temperature are clearly evident in
these data. In addition, it is noted that after cooling down

the grids did not return to their original positions, where
a difference of between approximately 20 and 70 microns
was observed.

A significant feature of this technique is thal it
enables the dynamic behavior of the grids to be measured.
The time dependence of the displacements for both grids
were evaluated, and are given in Fig. 9. The

displacement velocity for screen grid is noted to be faster
than for accelerator grid, probably because the heating on
the screen grid surface is faster than on the accelerator
grid surface.

Figure 7. Spatial temperature distribution on the grid
surfaces in the equKiMium condition.
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Figure 8. Absolute and relative displacement of the
screen and accelerator grids as a function of

tempenmre.
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Conclusions

°

.

,

The feasibility of applying the optical technique
described in this paper to measure thermally induced ion
thruster grid displacements has been demonstrated in a 4.

bench-top simulation. In addition, the dynamic capability
of the technique can provide information regarding grid
movement resulting from thermal transients such as start- 5.

up. The most difficult obstacle to the application of this

technique concerns the availability of a precision lens to
focus the laser beam on the grids. Application of this 6.

technique in a large vacuum chamber where long
distances between the lens and the ion engine grids (on

the order of meters) are unavoidable, (and assuming a 7.

numerical aperture of 0.0596) requires a precision lens
with a diameter of 238 mm. In addition, vibrations and

asymmetric grid deflections limit the resolution of this 8.

technique. To accurately access the effects of vibrations,
it is necessary evaluate the technique "in situ." Tests

performed to data, however, suggest that this technique 9.
can be made to work on an acuml ion engine operating
with beam exwaction.
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13.5 Appendix E: Charge-Exchange Plasma Model

A simple one-dimensional (axial) mathematical model of the

charge-exchange plasma in the ion thruster beam is described below.

This model has been briefly presented in other references m'mand is

presented in detail here for completeness. The distribution of the

charge-exchange ions along the thruster axis is calculated based on

the thruster geometry and operating conditions. This distribution

is then used as the source of the charge-exchange ions for the

propagation model.

The charge-exchange ions are created when a high energy ion

from the thruster interacts with a low energy neutral resulting in

a high energy neutral and a low energy ion. This low energy ion is

referred to as the charge-exchange ion. The local charge exchange

generation rate is given by

I_CE = nonigioOcz • (El)

Since the

velocity,

velocity.

ion velocity, vi, is much larger than the neutral

the relative velocity may be approximated by the ion

The ion current is assumed to be constant and concentrated on

the thruster axis in order to provide a closed form solution. The

ion current will actually have a radial distribution. Since the

neutral number density is largest on the centerline, this

assumption will result in a larger number of charge exchange ions

than are actually present. The ion current density, Jb, is given

by

Jb = _r_enivi • (E2)

The neutral atoms are considered as a free molecular flow

escaping through an orifice with an area equal to the beam area.
These neutrals are assumed to have a Maxwellian velocity

distribution. The flow rate of the neutrals through the orifice is

given by m

!
8kT o

No = 1 1 _ (E3)-4 nrefv° - 4 nref _m o

Only neutral atoms with velocities capable of reaching the point of

interest along the axis are considered for calculating the local

number density. That is, only neutrals that maybe Viewed through

the orifice from point P may reach point P, and therefore con-
tribute to the density (see Fig. El). The density at point P is

given by
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Figure E1 Model geometry for calculation of neutral atom density
(from Ref. 2).

n = nz, fv dv . (E4)

where fv is the Maxwell-Boltzmann velocity distribution,

fv = 2_kT ° v2 exp 2kTo ] • (E5)

Integrating over the range of interest, the local number density is
determined by

Ioov1no = nr°rJo Jo .1o [ 2_-kTo) v2exp 2kTo sin8 d4_ dO dv , (E6)

which yields

n o = nze---/f(i-cos81) (E7)
2

where
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cos8 z _ z .

_/Z 2 + rb2
(E8)

(Note: at the thruster exit the number density equals n_/2.)

The propellant utilization is defined as the ratio of the
total flux of ions to the total flux of particles from the

thruster,

Jb/e
_U E -- =

%

Note that the ratio of the total flux of neutrals to the total flux

of particles is given by

"$o - i-_.
•N,-o (EZO)

Equation (El) can be transformed, using Eqs. (E2), (E3), and (E6)-

(EIO), into

- ,lo) (z
ncz " _2e2r_vo nu [ zI (EZZ)

The total number of charge-exchange ions created is determined

by integrating the local generation rate, Eq. (Ell), along the axis
as follows:

IVcz = =r_fo'ncE dz = 2J_ocE(l - _u)
_e2rbvo _u (El2)

since the ion current is assumed to be constant, Eq. (El2) is

equivalent to:

2_C_ - JbOcz_o'no(Z) dz = JbOcE nzef rb (El3)e 2e

For the charge-exchange ion propagation model, the z-axis is
divided into N number of cells. The path of an ion or_glna£ing in

the center of each cell is traced (see Fig. El). The distribution

is established such that an equal number of charge-exchange ions

are contained in each cell (n_ = N_ / N). since the local

generation rate of the charge-exchange ions decreases with

increasing distance from the thruster, the lengths of the cells
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will correspondingly increase. A constant cross-section is
assumed. Since the area under consideration is finite, the model

assumes that 95 percent of the charge-exchange ions created fall

within the model boundaries. Equation (El3) may be transformed

into a summation of each of the regions:

2N 0.9 5nre f r b
I dZ = N[  ' no(z)dz- (E14)
TI_o_,I

Note that for N ion paths, 2N regions are used, as indicated in

Fig. FI. This method is used so that each ion path will have same

number of ions on each side. Integrating Eq. (El4) yields

0.95nz,fr b

Starting at the end of the thruster, z0, the remaining region

boundaries are calculated from Eq. (E15) in the form

Zi÷ 1 =

_[ 0.95nr,tz b r_

+ z i - _ -
2N 0.95nr,_r b

+zi-
2N

(El6)

The actual ion paths would be the odd number region boundaries.

The number density of the charge-exchange ions is given by

NcE 1
rice = __

N 2_x Ad m VcE (E17)

where V_ is the velocity of the charge-exchange ions,

_ kT,VCE = mo "

Finally, combining Eqs. (El2), (El7) and (E18) yields

n cE =
C

(E18)

where

C

J_ (I - _) oc= m o

_2e2rb _u N
, (E20)

which is reproduced as Eq. (8) in this report.
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13.S _ppendix F: Cathode Life Test Software

The computer software for the cathode life test consists of

approximately 4350 lines (about 70 pages) of code written in Turbo

Pascal V5.5. The computer-controlled data acquisition system is

used to monitor the cathode operation, record specified operating
data, and shut down the cathode and the vacuum system should an

error be detected. This system was designed to enable prolonged
unattended operation of the cathode.

The data acquisition system includes an IBM PC XT compatible

computer and data acquisition hardware supplied by the Opto 22

corporation. The data acquisition hardware updates the following
data once each second:

1. Anode voltage
2. Anode current

3. Starter electrode voltage
4. Xenon flow rate

5. Internal cathode pressure
6. Anode temperature

7. Cathode flange temperature

8. Back plate temperature
9. Anode temperature

10. Vacuum tank pressure
11. Foreline pressure

12. Two cartridge tip heater temperatures

13. Temperatures of both diffusion pumps

The hardware averages "n" successive readings of each input channel

together before sending the results to the host computer. The

value of "n" is sent to the data acquisition hardware by the host

computer and can be changed by the operator without interrupting
the life test. Typically a value of n = 3 is used. Averaging the
data in this manner minimizes the likelihood that a noise induced

error will cause the computer to shut down the test. Since the

data acquisition hardware updates each input channel at the rate of

approximately once each second, averaging three such readings
together implies that new values for all input channels are sent to

the computer at the rate of once every three seconds. The host

computer polls the data acquisition hardware to determine when the
averaging process has been completed for all channels. It then

requests that the data be sent and initiates a new averaging cycle.

The host computer computes run-time, amp-hours, and total

xenon consumed, and converts the input data from the data
acquisition hardware to engineering units. This information is

then displayed on the CRT, and is updated approximately once every
"n" seconds. In addition, at operator specified time intervals the

data is sent to a printer for hard copy data storage, and recorded
on the computer's hard disk. In general, a time interval of 5
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minutes was selected for the data storage. The system has two

printers on-line, but only one printer is used at a time. If the

primary printer fails the computer will automatically switch to the
other printer. If the backup printer also fails the computer will

shut down the experiment and wait for help. The data recorded on
the hard disk is stored under a new file name every 24 hours. This

prevents a power outage or computer failure from destroying all but
the data in the current open file (which at most covers a 24 hour

period). It also facilitates copying the data from the hard disk

to floppy disks for off-line analysis.

Although the data are recorded on the printer and hard disk

every 5 minutes, the computer internally stores the 60 most recent

readings from each channel (which are at "n" second intervals). In
the event of a cathode shutdown the computer will print out these

data, providing a detailed description of the cathode operation

leading up to the shutdown.

The computer will shut down the cathode if the anode voltage,

tank pressure, or foreline pressure are detected to be outside of
their allowed operating bands. In addition, the vacuum system

itself will be shut down if the tank pressure or foreline pressure
are outside their limits. The computer shuts down the vacuum

system by closing the high vacuum valves, turning off the diffusion

pump heaters, closing the foreline isolation valves and turning off
the mechanical pumps. A hardwired safety feature will shut down

the vacuum system if cooling water is lost. The data acquisition
hardware monitors the serial communications link between itself and

the host computer, and will shut down the cathode in the event that

the host computer malfunctions.

The software for the host computer includes modem handling

procedures which enable remote monitoring of the life test. The

computer will answer incoming phone calls and will output the

cathode operating data in real time through the modem. Other

software procedures enable the computer to plot on the CRT the most
recent 24 hours of data in real time, thus allowing quick

evaluation of recent data trends. Finally, the program is run

under the DesqView multitasking operating system. This

multitasking system allows the data files to be copied from the
hard disk for off-line analysis without interrupting the test.
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